Trên một đường tròn, lấy liên tiếp ba cung AC,CD, DB sao cho Hai đường thẳng AC và DB cắt nhau tại E. Hai tiếp tuyến của đường tròn tại B và C cắt nhau tại T. Chứng minh rằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + là góc có đỉnh ở ngoài đường tròn chắn hai cung
+ là góc có đỉnh ở ngoài đường tròn chắn hai cung
a) + là góc có đỉnh ở ngoài đường tròn chắn hai cung
+ là góc có đỉnh ở ngoài đường tròn chắn hai cung
b) là góc tạo bởi tiếp tuyến CT và dây CD
Kiến thức áp dụng
+ Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
a: Xét ΔOAC có OA=OC và góc AOC=60 độ
nên ΔOAC đều
=>góc CAO=60 độ
Xet ΔOBD có OB=OD và góc DOB=60 độ
nên ΔOBD đều
=>góc B=60 độ
Xét ΔEAB có góc EAB=góc EBA=60 độ
nên ΔEAB đều
=>góc E=60 độ
góc BOC=60+60=120 độ
=>góc BTC=60 độ=góc AEB
a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:
\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)
và \(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:
\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)
Vậy =
b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:
\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)
→ \(\widehat{DCB}\) là góc nội tiếp trên
\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)
Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)
d) tam giác ABC dùng sin,cos,tan,cot gì đó tính ra CB và AC thì ta đước IB=CB
Xét tam giác KIB và tam giác ACB
có : AB=IB(tam giác IBC đều -cmt)
ACB=KIB=90
KBI=CBA(cùng chắn 2 cung bằng nhau)
=>hai tam giác bằng nhau
=> KI=AC
S=(KI+AB)*IB)/2
a) vì cung AC ,,cung CD , cung BD bằng nhau
=>góc COC=góc COD=góc BOD
mà tổng của chúng =180độ
=>mỗi góc = 60 độ
=>..............................
VẼ HÌNH (chú thích : c là cùng / g là gốc /)
Ta có :cBC=cCD+cBD
:cAD=cCD+cAC
mà :cAD=cBC(gt)
Do do : cBD=cAD (1)
Ta có:gocCAB la goc noi tiep chan cBC (2)
:gocDBA la goc noi tiep chan cAD(3)
Từ(1),(2) va (3) suy ra :gocCAB=gocDBA
=> Tứ giác ACDB là hình thang cân(vì sd 2 gốc ở đay=nhau)