số nguyên x thỏa mãn
\(\left(\frac{9}{25}\right)^{-x}=\frac{5}{3}^{-6}\)
giải giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\left(\frac{3}{4}\right)^3\right)^2=\left(\frac{9}{16}\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\left(\frac{3}{4}\right)^2\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\frac{3}{4}\right)^{2x}\)
=>6=2x
=>x=3
Sorry, cho mình làm lại:
\(\left(\left(\frac{3}{4}\right)^3\right)^2=\left(\frac{16}{9}\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\left(\frac{4}{3}\right)^2\right)^x\)
=>\(\left(\frac{3}{4}\right)^6=\left(\frac{4}{3}\right)^{2x}\)
=>\(\left(\frac{3}{4}\right)^6=\frac{1}{\left(\frac{3}{4}\right)^{2x}}\)
=>\(\left(\frac{3}{4}\right)^6=\left(\frac{3}{4}\right)^{-2x}\)
=>6=-2x
=>-6=2x
=>x=-3
\(VT=\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)
\(VP=\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)
Như vậy \(VT\ge6;VP\le6\)
Mà \(VT=VP\Leftrightarrow VT=VP=6\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)
ta có : \(x\ne3\) để mẫu khác 0
Vì 2 phân số có cùng mẫu nên
\(\left|x-5\right|=\left|x-1\right|\)
*TH1: \(\begin{cases}x-5\ge0\\x-1\ge0\end{cases}\)
\(x-5=x-1\)
\(0x=4\)
KHông có giá trị x
*TH2:
\(\begin{cases}x-5\le0\\x-1\le0\end{cases}\)
\(-\left(x-5\right)=-\left(x-1\right)\)
\(\Rightarrow-x-5=-x+1\)
\(0x=-4\)
Không có giá trị x
*TH3:
\(\begin{cases}x-1\ge0\\x-5\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)
\(-\left(x-5\right)=x-1\)
\(\Rightarrow5+1=2x\)
\(\frac{6}{2}=x\)
\(x=3\)
Mà \(x\ne3\)
nên ko có giá trị thỏa mãn
vậy không có giá trị x nguyên thỏa mãn với đề bài
\(\left(\frac{9}{25}\right)^{-x}=\left(\frac{5}{3}\right)^{-6}\Leftrightarrow\left(\frac{9}{25}\right)^{-x}=\left(\frac{3}{5}\right)^6=\left(\frac{9}{25}\right)^3\Leftrightarrow-x=3\Leftrightarrow x=-3\)