Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)(1)
\(\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)(2)
\(\left(1\right);\left(2\right)\Rightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
( 3x-5 /9 )^2002 > 0 ; ( 3y+0,4/3 )^2004 > 0
=> (3x-5/9 )^2002 = 0 và ( 3y + 0,4 / 3 )^2004 = 0
=> 3x - 5 = 0
3x = 5
x = 5/3
=> 3y + 0,4 = 0
3y = -0,4
y= -2/15
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|3x+1|+|3x-5|=|3x+1|+|5-3x|\geq |3x+1+5-3x|=6$
$(y+3)^2+2\geq 2, \forall y\Rightarrow \frac{12}{(y+3)^2+2}\leq \frac{12}{2}=6$
Vậy:
$|3x+1|+|3x-5|\geq 6\geq \frac{12}{(y+3)^2+2}$
Dấu "=" xảy ra (3x+1)(5-3x)\geq 0$ và $y+3=0$
$\Leftrightarrow \frac{-1}{3}\leq x\leq \frac{5}{3}$ và $y=-3$
\(\frac{x}{2014}=\frac{y}{2015}=\frac{z}{2016}=\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Leftrightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)
\(\Leftrightarrow\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left[2\left(x-y\right)\right]^2.\left[2\left(y-z\right)\right]=8\left(x-y\right)^2\left(y-z\right)\)
\(VT=\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)
\(VP=\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)
Như vậy \(VT\ge6;VP\le6\)
Mà \(VT=VP\Leftrightarrow VT=VP=6\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)