K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

M=(x2-2x+1) + (y2-2y+1)-xy=(x-1)2 + (y-1)2-xy

10 tháng 4 2019

\(\hept{\begin{cases}\left(x+1\right)\left(2y+3\right)=5\\\left(x+2\right)\left(3y-1\right)=-4\end{cases}\Rightarrow x+1=\frac{5}{2y+3}\Leftrightarrow x+2=\frac{8+2y}{2y+3}}\)

\(\Leftrightarrow\left(x+2\right)\left(3y-1\right)=\left(\frac{8+2y}{2y+3}\right)\left(3y-1\right)=-4\)

\(\Leftrightarrow\left(8+2y\right)\left(3y-1\right)=-8y-12\\ \Leftrightarrow6y^2+30y+4=0\)

\(\Rightarrow\orbr{\begin{cases}y=\frac{-15+\sqrt{201}}{6}\\y=\frac{-15-\sqrt{201}}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-83-5\sqrt{201}}{8}\\x=\frac{-83+5\sqrt{201}}{8}\end{cases}}\)

10 tháng 4 2019

cảm ơn nha! mk bt cách làm rùi nhưng mà bạn tính x sai mất rùi! dù sao cũng camon nhìu lắm!!! ^ ^

27 tháng 7 2017

gt ngỏ nhất của bt A là 1.

gt lớn nhất của biểu thức B là -100

gt nhỏ nhất của bt C là -3

31 tháng 8 2021

a )\(2x\left(xy-3\right)+3xy\left(x+1-y\right)+3x\left(y^2-1\right)=2x^2y-6x+3x^2y+3xy-3xy^2+3xy^2-3x=5x^2y-9x+3xy\)

=> Phụ thuộc vào giá trị của biến

b) \(\left(x+2y\right)\left(x-2y\right)-x\left(x+4y^2\right)+5=x^2-4y^2-x^2-4xy^2+5=-4y^2-4xy^2+5\)

=> Phụ thuộc vào giá trị của biến

c) \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)=27x^3+8-9x^2+4=27x^3-9x^2+12\)

=> Phụ thuộc vào giá trị của biến

a: Ta có: \(2x\left(xy-3\right)+3xy\left(x-y+1\right)+3x\left(y^2-1\right)\)

\(=2x^2y-6x+3x^2y-3xy^2+3xy+3xy^2-3x\)

\(=5x^2y+3xy-9x\)

c: Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)\)

\(=27x^3+8-9x^2+4\)

\(=27x^3-9x^2+12\)

a: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

b: \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2\)

\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=x^3+2x^2y+xy^2+2x^2y+2xy^2+y^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

3 tháng 9 2021

a. Ta có \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)

b. Ta có \(x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)\(\Rightarrow\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

27 tháng 10 2016

Ta có:\(\frac{x+y}{2}=\frac{y-5}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)

\(\Rightarrow\frac{x+2y-5}{5}=\frac{x+2y-5}{y-1}\)\(\Rightarrow y-1=5\Rightarrow y=6\)

\(\Rightarrow\frac{x+6}{2}=\frac{6-5}{3}\)\(\Rightarrow\frac{x+6}{2}=\frac{1}{3}\)

\(\Rightarrow3\cdot\left(x+6\right)=2\)

\(\Rightarrow3x+18=2\)

\(\Rightarrow3x=-16\Rightarrow x=\frac{-16}{3}\)

 

27 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)

\(=\frac{x+2y-5}{y-1}\) (theo đề bài)

=> y - 1 = 5

=> y = 5 + 1 = 6

Thay y = 6 vào đề bài ta có: \(\frac{x+6}{2}=\frac{7-6}{3}=\frac{1}{3}\)

\(\Rightarrow x=\frac{1}{3}.2-6=\frac{-16}{3}\)

Vậy \(x=\frac{-16}{3};y=6\)