Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Sửa đề: AO vuông góc BI
Gọi M là trung điểm của IC
Xét ΔIHC có IO/IH=IM/IC
nên OM//HC và OM=1/2HC
=>OM vuông góc AH
Xet ΔAHM có
MO,HI là đường cao
MO cắt HI tại O
=>O là trực tâm
=>AO vuông góc HM
=>AO vuông góc BI
1.4:
a: CH=16^2/24=256/24=32/3
BC=24+32/3=104/3
AC=căn 32/3*104/3=16/3*căn 13
b: BC=12^2/6=24
AC=căn 24^2-12^2=12*căn 3
CH=24-6=18
\(4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)^3-12ab\left(a+b\right)-6\left(a+b\right)^2+12ab\)
\(=4-6-12ab+12ab\)
=-2
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
cos2x - (2m + 1)cosx + m + 1 = 0
⇔ 2cos2x - (2m + 1).cosx = 0
⇔ \(\left[{}\begin{matrix}cosx=0\left(1\right)\\2cosx=2m+1\left(2\right)\end{matrix}\right.\)
(1) ⇔ \(x=\dfrac{\pi}{2}+k\pi\) với k thuộc Z. Mà \(x\in\left(\dfrac{\pi}{2};2\pi\right)\)
⇒ x = \(\dfrac{3\pi}{2}\)
Như vậy đã có 1 nghiệm trên \(\left(\dfrac{\pi}{2};2\pi\right)\) đó là x = \(\dfrac{3\pi}{2}\). Bây giờ cần tìm m để (2) có 2 nghiệm phân biệt trên \(\left(\dfrac{\pi}{2};2\pi\right)\) và trong 2 nghiệm đó không có nghiệm x = \(\dfrac{3\pi}{2}\). Tức là x = \(\dfrac{3\pi}{2}\) không thỏa mãn (2), tức là
2m + 1 ≠ 0 ⇔ \(m\ne-\dfrac{1}{2}\)
(2) ⇔ \(2.\left(2cos^2\dfrac{x}{2}-1\right)=2m+1\)
⇔ \(4cos^2\dfrac{x}{2}=2m+3\)
Do x \(\in\left(\dfrac{\pi}{2};2\pi\right)\) nên \(\dfrac{x}{2}\in\left(\dfrac{\pi}{4};\pi\right)\) nên cos\(\dfrac{x}{2}\) ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)
Đặt cos\(\dfrac{x}{2}\) = t ⇒ t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\). Ta được phương trình : 4t2 = 2m + 3
Cần tìm m để [phương trình được bôi đen] có 2 nghiệm t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)
Dùng hàm số bậc 2 là ra. Nhớ kết hợp điều kiện \(m\ne-\dfrac{1}{2}\)
\(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}=\tan\alpha\)
\(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{AB}{BC}:\dfrac{AC}{BC}=\dfrac{AB}{AC}=\cot\alpha\)
\(\tan\alpha\cot\alpha=\dfrac{AC}{AB}\cdot\dfrac{AB}{AC}=1\)
\(\sin^2\alpha+\cos^2\alpha=\dfrac{AC^2}{BC^2}+\dfrac{AB^2}{BC^2}=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\left(pytago\right)\)