K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

cos2x - (2m + 1)cosx + m + 1 = 0

⇔ 2cos2x - (2m + 1).cosx = 0

⇔ \(\left[{}\begin{matrix}cosx=0\left(1\right)\\2cosx=2m+1\left(2\right)\end{matrix}\right.\)

(1) ⇔ \(x=\dfrac{\pi}{2}+k\pi\) với k thuộc Z. Mà \(x\in\left(\dfrac{\pi}{2};2\pi\right)\)

⇒ x = \(\dfrac{3\pi}{2}\)

Như vậy đã có 1 nghiệm trên \(\left(\dfrac{\pi}{2};2\pi\right)\) đó là x = \(\dfrac{3\pi}{2}\). Bây giờ cần tìm m để (2) có 2 nghiệm phân biệt trên \(\left(\dfrac{\pi}{2};2\pi\right)\) và trong 2 nghiệm đó không có nghiệm x = \(\dfrac{3\pi}{2}\). Tức là x = \(\dfrac{3\pi}{2}\) không thỏa mãn (2), tức là

2m + 1 ≠ 0 ⇔ \(m\ne-\dfrac{1}{2}\)

(2) ⇔ \(2.\left(2cos^2\dfrac{x}{2}-1\right)=2m+1\)

⇔ \(4cos^2\dfrac{x}{2}=2m+3\)

Do x \(\in\left(\dfrac{\pi}{2};2\pi\right)\) nên \(\dfrac{x}{2}\in\left(\dfrac{\pi}{4};\pi\right)\) nên cos\(\dfrac{x}{2}\) ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)

Đặt cos\(\dfrac{x}{2}\) = t ⇒ t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\). Ta được phương trình : 4t2 = 2m + 3

Cần tìm m để [phương trình được bôi đen] có 2 nghiệm t ∈ \(\left(-1;\dfrac{\sqrt{2}}{2}\right)\)

Dùng hàm số bậc 2 là ra. Nhớ kết hợp điều kiện \(m\ne-\dfrac{1}{2}\)

 

25 tháng 2 2023

loading...  

1 tháng 5 2022

Ta có : \(f\left(2\right)=2a+b-6\)

\(\lim\limits_{x\rightarrow2^+}\dfrac{x-\sqrt{x+2}}{x^2-4}=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-x-2}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{x+2}\right)}\)  

\(=\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(x+2\right)\left(x+\sqrt{x+2}\right)}=\dfrac{3}{16}\)

\(\lim\limits_{x\rightarrow2^-}x^2+ax+3b=4+2a+3b\) 

H/s liên tục tại điểm x = 2 \(\Leftrightarrow\dfrac{3}{16}=2a+3b+4=2a+b-6\)

Suy ra : \(a=\dfrac{179}{32};b=-5\) => t = a + b = 19/32 . Chọn C 

13 tháng 9 2021

1, Hàm số xác định 

⇔ cos2x ≠ 4

Mà 0 ≤ cos2x ≤ 1 nên điều trên đúng ∀ x ∈ R

Tập xác định : D = R

2, Hàm số xác định ⇔ \(\left\{{}\begin{matrix}cos3x\ne0\\cosx\ne0\end{matrix}\right.\)

⇔ cos3x ≠ 0

⇔ x ≠ \(\pm\dfrac{\pi}{6}+k.\dfrac{\pi}{3}\) , k ∈ Z

Tập xác định : D = R \ { \(\pm\dfrac{\pi}{6}+k.\dfrac{\pi}{3}\) , k ∈ Z}

3, D = [- 2 ; 2]

4, D = [- 1 ; +\(\infty\)) \ {0 ; 4}

11, sin2x - cos2x ≠ 0 

⇔ cos2x ≠ 0