e. x^8+64= ?
g. x^7+x^5+1
h. (x^2+x+1)(x^2+x+2)-12
i. (x-1)(x-2)(x-3)(x-4)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+4=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(x^4+2x^2-24=\left(x^2+6\right)\cdot\left(x^2-4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+6\right)\)
a) x2 + x = 0
=> x( x+ 1 ) = 0
=> x = 0
hoặc x = -1
b) b, (x-1)x+2 = (x-1)x+4
=> x + 2 = x + 4
=> 0x = 2 ( ktm)
Vậy ko có giá trị x nào thoả mãn đk
d) Ta có: x-1/x+5 = 6/7
=>(x-1).7 = (x+5).6
=>7x-7 = 6x+ 30
=> 7x-6x = 7+30
=> x = 37
Vậy x = 37
e, x2/ 6= 24/25
=> x2 . 25 = 6 . 24
⇒
Vậy
\(a,\dfrac{-1}{8}=\dfrac{3}{x}\\ \dfrac{3}{-24}=\dfrac{3}{x}\\ x=-24\\ b,\dfrac{x}{3}=\dfrac{3}{x}\\ x.x=3.3\\ x^2=9\\ x=\pm3\\ c,\dfrac{3}{4}.x=1\dfrac{1}{2}\\ \dfrac{3}{4}.x=\dfrac{3}{2}\\ x=\dfrac{3}{2}:\dfrac{3}{4}\\ x=2\\ d,x-\dfrac{3}{10}=\dfrac{7}{15}:\dfrac{3}{5}\\ x-\dfrac{3}{10}=\dfrac{7}{9}\\ x=\dfrac{7}{9}+\dfrac{3}{10}\\ x=\dfrac{97}{90}\\ e,\dfrac{-4}{7}-x=\dfrac{-8}{3}.\dfrac{3}{7}\\ \dfrac{-4}{7}-x=\dfrac{-8}{7}\\ x=\dfrac{-4}{7}+\dfrac{8}{7}\\ x=\dfrac{4}{7}\\ \)
a.7,2 :2 x 58,6 + 2,93 x 2 x 64
= 3,6 x 58,6 + 5,86 x 64
=210,96 + 357,04
=586
b.\(4\frac{2}{5}+2\frac{3}{7}-2\frac{2}{5}+5\frac{4}{7}\)
=\(\left(4\frac{2}{5}-2\frac{2}{5}\right)+\left(2\frac{3}{7}+5\frac{4}{7}\right)\)
= 2 + 8
= 10
c. 2 x 41 x 36 + 8 x 9 x 58 + 12 x 6
=72 x 41 + 72 x 58 + 72 x 1
=72 x ( 41 + 58 +1 )
=72 x 100
=7200
d, \(\frac{3}{5}\)x \(\frac{1}{2}\):\(\frac{2}{5}\)
=\(\frac{3}{5}\)x \(\frac{1}{2}\)x\(\frac{5}{2}\)
=\(\frac{3}{4}\)
a) \(\left|x\right|-\frac{7}{6}=\frac{9}{15}\)
=> \(\left|x\right|=\frac{9}{15}+\frac{7}{6}=\frac{53}{30}\)
=> \(\orbr{\begin{cases}x=\frac{53}{30}\\x=-\frac{53}{30}\end{cases}}\)
b) \(\left|x-\frac{4}{3}\right|=\frac{1}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{1}{6}\\x-\frac{4}{3}=-\frac{1}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{7}{6}\end{cases}}\)
c) \(\left|x-\frac{4}{3}\right|-\frac{1}{3}=\frac{1}{2}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{1}{2}+\frac{1}{3}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{5}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{5}{6}\\x-\frac{4}{3}=-\frac{5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{6}\\x=\frac{1}{2}\end{cases}}\)
d) \(\frac{8}{3}-\left|\frac{7}{9}-x\right|=-\frac{1}{5}\)
=> \(\left|\frac{7}{9}-x\right|=\frac{43}{15}\)
=> \(\orbr{\begin{cases}\frac{7}{9}-x=\frac{43}{15}\\\frac{7}{9}-x=-\frac{43}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{94}{45}\\x=\frac{164}{45}\end{cases}}\)
e) \(\left|x-\left(\frac{1}{4}\right)^2\right|-\frac{25}{64}=0\)
=> \(\left|x-\frac{1}{16}\right|=\frac{25}{64}\)
=> \(\orbr{\begin{cases}x-\frac{1}{16}=\frac{25}{64}\\x-\frac{1}{16}=-\frac{25}{64}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{29}{64}\\x=-\frac{21}{64}\end{cases}}\)
f) \(\left(x-\frac{1}{4}\right)^2+\frac{17}{64}=\frac{21}{32}\)
=> \(\left(x-\frac{1}{4}\right)^2=\frac{25}{64}\)
=> \(\left(x-\frac{1}{4}\right)^2=\left(\frac{5}{8}\right)^2\)
=> \(\orbr{\begin{cases}x-\frac{1}{4}=\frac{5}{8}\\x-\frac{1}{4}=-\frac{5}{8}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{3}{8}\end{cases}}\)
1: \(2^x=64\)
=>\(x=log_264=6\)
2: \(2^x\cdot3^x\cdot5^x=7\)
=>\(\left(2\cdot3\cdot5\right)^x=7\)
=>\(30^x=7\)
=>\(x=log_{30}7\)
3: \(4^x+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)
=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)
=>\(2^x-1=0\)
=>\(2^x=1\)
=>x=0
4: \(9^x-4\cdot3^x+3=0\)
=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)
Đặt \(a=3^x\left(a>0\right)\)
Phương trình sẽ trở thành:
\(a^2-4a+3=0\)
=>(a-1)(a-3)=0
=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)
=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)
=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)
=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)
=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)
=>\(3^{x+1}-2=0\)
=>\(3^{x+1}=2\)
=>\(x+1=log_32\)
=>\(x=-1+log_32\)
6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)
Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)
Phương trình sẽ trở thành:
\(\dfrac{1}{b}+b=2\)
=>\(b^2+1=2b\)
=>\(b^2-2b+1=0\)
=>(b-1)2=0
=>b-1=0
=>b=1
=>\(\left(2+\sqrt{3}\right)^x=1\)
=>x=0
7: ĐKXĐ: \(x^2+3x>0\)
=>x(x+3)>0
=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)
=>\(x^2+3x=4^1=4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
Bài 1:
a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)
\(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)
\(x=-\) \(\dfrac{49}{56}\)
Vậy \(x=-\dfrac{49}{56}\)
b; 6 - \(x\) = - \(\dfrac{3}{4}\)
\(x\) = 6 + \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)
\(x=\dfrac{27}{4}\)
Vậy \(x=\dfrac{27}{4}\)
c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)
\(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)
\(x=\dfrac{19}{20}\)
Vậy \(x=\dfrac{19}{20}\)
Bài 1:
d; - 6 - \(x\) = - \(\dfrac{3}{5}\)
\(x\) = - 6 + \(\dfrac{3}{5}\)
\(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)
\(x=-\dfrac{27}{5}\)
Vậy \(x=-\dfrac{27}{5}\)
e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)
\(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)
\(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)
\(x=\dfrac{22}{21}\)
Vậy \(x=\dfrac{22}{21}\)
f; - 8 - \(x\) = - \(\dfrac{5}{3}\)
\(x\) = \(-\dfrac{5}{3}\) + 8
\(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)
\(x\) = \(\dfrac{-19}{3}\)
Vậy \(x=-\dfrac{19}{3}\)
h. (x2+x+1)(x2+x+2)-12
Đặt (x2+x+1)=h, ta được: h(h+1)-12
= h2+h-12
= (h2+4h)-(3h+12)
= h(h+4)-3(h+4)
= (h+4)(h-3)
Thay trở lại vào biểu thức, ta được: (x2+x+1+4)(x2+x+1-3)
= (x2+x+5)(x2+x-2)