Cho \(n\in Z+\) biết 2n+1 và 3n+1 là 2 số chính phương
CM:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
Vậy n=40
Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n⋮8
n⋮8 (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n⋮5 (2)
Từ (1) và (2)n⋮40
Vậy n=40k thì ...
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40
N là số tự nhiên có 2 chữ số
=> 21</ 2n+1</199
Mà 2n+1 là số chính phương ={16;25;36;49;64;81;100;121;169}
n={12;24;40;60;84}
3n+1={37;73;121;181;253}
Vì 3n+1 là số chính phương
=> 3n+1=121
<=> n=40
N ? vật N là 1 số ? cũng là một số chẵn tự nhiên :
=> 21 </2n+1<199
Mà 2n +1 là số chính phương
=> {16;25;36;49;64;81;100;121;169}
Kể từ cn số n thì tức là từ 16 đến 81 có số lẻ vào chẵn nên loại bỏ cái số đó phải loại bỏ nha
Chỉ lấy cái số sau : 12;24;40;60;84 Uầy hình như @Lê Anh Tú nên loại bỏ 50
3n + 1 ={37;73;121;181;253}
Vì 3n là số lẻ nên lấy các số lẻ :> Chị hĩu hôg
vì 3n là số chính phương nên
<=> 3n + 1 =121
<=> n=4
10 ≤ n ≤ 99
<=> 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên 2n+1∈ {25;49;81;121;169}
<=> n ∈{12;24;40;60;84}
<=> 3n+1∈{37;73;121;181;253}
<=> n=40
Vì n là số tự nhiên có 2 chữ số thì 10≤n≤9910≤n≤99
=>21≤2n+1≤19921≤2n+1≤199
Vì 2n+1 là số chính phương
=>2n+1=(16;25;36;499;64;81;100;121;169)
n=(12;24;40;60;84)
=>3n+1=(37;73;121;181;253)
Mà 3n+1 là số chính phương
=>3n+1=121
=>n=40
Giả sử \(2n+1=m^2;3n+1=k^2\)(m,n nguyên dương)
m lẻ<=>2n=m2-1=(m-1)(m+1) chia hết 4 <=> n chẵn <=>k lẻ
Từ 3n+1=k2 <=>3n=k2-1=(k-1)(k+1) chia hết 8 (do k+1 và k-1 là 2 số chẵn liên tiếp).Do đó n chia hết 8 (1)
Một số số chính phương khi chia cho 5 chỉ có thể dư 0,1,4
2n+1=10p+1 chia 5 dư 1,tm
Vậy n chia hết 5 (2)
Từ (1) và (2) ta có n chia hết 5 và 8 <=> n chia hết 40