So sánh
a, 2300 và 3200
b, 2333 và 3222
c, 10750 và 7375
d, 291 và 535
e, 544 và 2112
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
Bài 1:
D = 5 + 52 + 53+...+ 5100
5.D = 52 + 53+...+5 100 + 5101
5D - D = 5101 - 5
4D = 5101 - 5
D = \(\dfrac{5^{101}-5}{4}\)
Bài 2:
So sánh
a, 544 = (2.33)4 = 24.312
2112 = (3.7)12 = 312.712
Vì 24 < 712 nên 544 < 2112
b, 339 và 1121
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 97 < 117
Vậy 339 < 1121
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)
\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)
Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)
#\(Toru\)
a> \(3^{200}\) và \(2^{300}\)
Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9>8 nên \(9^{100}>8^{100}\)
\(\Rightarrow\)\(3^{200}>2^{300}\)
b> \(5^{40}\) và \(3^{50}\)
Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)
\(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
Vì 625 > 243 nên \(625^{10}>243^{10}\)
\(\Rightarrow\)\(5^{40}>3^{50}\)
Ta có: \(2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
Nên \(2^{333}< 3^{222}\)
a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)
\(2^{108}=\left(2^9\right)^{12}=512^{12}\)
Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\) (1)
Lại có: \(108>105\Rightarrow2^{108}>2^{105}\) (2)
Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)
b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)
Do \(33>32\Rightarrow33^{10}>32^{10}\)
Vậy \(33^{10}>2^{50}\)
c) Do \(513>512\Rightarrow513^{100}>512^{100}\) (1)
\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)
Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)
Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
a) Ta có: 2300 = (23)100 = 8100(1)
3200 = (32)100 = 9100(2)
Từ (1) và (2) ta có: 8100 < 9100 => 2300 < 3200