K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 8 2021

A H B C M

ta có : \(sinB=\frac{AH}{AB}\Rightarrow AH=24\times\frac{5}{13}=\frac{120}{13}cm\)

\(sinB=\frac{5}{13}\Rightarrow tanB=\frac{5}{12}\)

mà \(tanB=\frac{AC}{AB}\Rightarrow AC=AB.tanB=24\times\frac{5}{12}=10cn\)

\(\Rightarrow AM=5cm\Rightarrow BM=\sqrt{AM^2+AB^2}=\sqrt{25+24^2}=\sqrt{601}cm\)

15 tháng 11 2015

CONAN và KUDO SHINICHI bắt đầu đoán mò

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

10 tháng 8 2021

a) BD.\(\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BD\sqrt{CH.BC}+CE\sqrt{BH.BC}=AH.BC=AB.AC\)

\(\Leftrightarrow BD\sqrt{AC^2}+CE\sqrt{AB^2}=AB.AC\Leftrightarrow\dfrac{BD}{AB}+\dfrac{CE}{AC}=1\) (đẳng thức đúng)

Áp dụng định lí Ta- lét ta có:

\(\dfrac{BD}{AB}=\dfrac{BH}{BC};\dfrac{CE}{AC}=\dfrac{CH}{BC}\)

\(\dfrac{BD}{AB}+\dfrac{CE}{AC}=\dfrac{BH+CH}{BC}=\dfrac{BC}{BC}=1\)

10 tháng 8 2021

em mới học lớp 8 nên cách này em ko hiểu ạ
có cách nào đơn giản ko ạ

6 tháng 9 2020

Áp dụng định lí Ceva cho tam giác ABC có 3 cát tuyến AH,BM,CD đồng quy: \(\frac{MA}{MC}.\frac{HC}{HB}.\frac{DB}{DA}=1\Rightarrow\frac{HC}{HB}=\frac{AD}{BD}\)

                                                                          (Vì M trung điểm AC nên \(\frac{MA}{MC}=1\))

(Định lí Ceva này bạn có thể lên google search để nắm rõ, Định lí này chỉ học sinh trong đội tuyển mới học thoi)

Vì CD là phân giác \(\widehat{BCA}\)nên \(\frac{CA}{CB}=\frac{DA}{DB}\Rightarrow\frac{AC}{BC}=\frac{HC}{HB}=\frac{BC-HB}{HB}=\frac{BC}{HB}-1\)

\(\Rightarrow AC=\frac{BC^2}{HB}-BC=\frac{AB^2+AC^2}{HB}-BC=\frac{HB.BC+AC^2}{HB}-BC=\frac{AC^2}{HB}\Rightarrow AC=HB\)

( Chỗ này áp dụng định lí Pythagoras: BC2 = AB2+AC2 và Hệ thức lượng tam giác vuông AB2=HB.BC)

Có \(\hept{\begin{cases}AB^2=HB.BC\\BC^2=AB^2+AC^2\end{cases}\Rightarrow\hept{\begin{cases}AB^2=aAC\\AB^2=a^2-AC^2\end{cases}}\Rightarrow\hept{\begin{cases}AB=\sqrt{aAC}\\AC^2+aAC-a=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}AC=\frac{-a+\sqrt{a^2+4a}}{2}=\frac{2a}{a+\sqrt{a^2+4a}}\\AB=\sqrt{aAC}=\sqrt{\frac{2a^2}{a+\sqrt{a^2+4a}}}\end{cases}}\)

5 tháng 11 2020

chua hoc