K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

a: Xét ΔABD vuông tại D và ΔCBA vuông tại A có

góc B chung

=>ΔABD đồng dạng với ΔCBA

=>BA^2=BD*BC

b: IA/ID=BA/BD

MA/MC=BA/BC

=>IA/ID*MA/MC=BA^2/BD*BC=1

10 tháng 5 2018

Áp dụng tỉ số tanB trong tam giác vuông HAB và các hệ thức lượng trong tam giác vuông, chúng ta tính được AC = 30 13 cm; BM = 601 4 cm

19 tháng 10 2023

loading...   

\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)

⇒ AC = \(\dfrac{5}{12}\) .AB

= \(\dfrac{5}{12}.5\)

\(=\dfrac{25}{12}\) (cm)

∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

\(=5^2+\left(\dfrac{25}{12}\right)^2\)

= \(\dfrac{4225}{144}\)

⇒ BC = \(\dfrac{65}{12}\) (cm)

AH.BC = AB.AC

⇒ AH = AB . AC : BC

= 5 . \(\dfrac{25}{12}:\dfrac{65}{12}\)

\(=\dfrac{25}{13}\left(cm\right)\)

M là trung điểm của AC

⇒ AM = AC : 2 = \(\dfrac{25}{12}:2\) \(=\dfrac{25}{24}\) (cm)

∆ABM vuông tại A

⇒ BM² = AB² + AM²

= \(5^2+\left(\dfrac{25}{24}\right)^2\)

= \(\dfrac{15025}{576}\)

⇒ BM = \(\dfrac{5\sqrt{601}}{24}\) (cm)

29 tháng 10 2021

b: Xét ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=AB^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

NM
14 tháng 8 2021

A H B C M

ta có : \(sinB=\frac{AH}{AB}\Rightarrow AH=24\times\frac{5}{13}=\frac{120}{13}cm\)

\(sinB=\frac{5}{13}\Rightarrow tanB=\frac{5}{12}\)

mà \(tanB=\frac{AC}{AB}\Rightarrow AC=AB.tanB=24\times\frac{5}{12}=10cn\)

\(\Rightarrow AM=5cm\Rightarrow BM=\sqrt{AM^2+AB^2}=\sqrt{25+24^2}=\sqrt{601}cm\)