K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:
$543.799.111$ có tận cùng là $7$ (do $3.9.1$ có đuôi 7) 

Do đó $543.799.111+58$ có tận cùng là $5$ 

$\Rightarrow 543.799.111+58\vdots 5$ 

Mà $543.799.111+58>5$ nên nó là hợp số.

18 tháng 7 2021

  a/   A = 10^2003 + 125 = (10^2003 -10) + 135 Vì 135 chia hết cho 45 nên chỉ cần chứng minh B = 10^2003 - 10 chia hết cho 45

Ta có B = 10^2003 -10 =10.(10^2002 - 1) = 10.(10^1001 -1).(10^1001 + 1) = 999...90.(10^1001 + 1) chia hết cho 45 (đpcm)

Chú ý : 10^1001 - 1 = 999...9 Là số có 1001 chữ số 9

Bạn thấy thế nào với lời giải của mình? 

b/   C = 543.799.111 + 58  = (60.9 + 3).(88.9 + 7).(11.9 + 2) + 58 = (9.k + 21).(11.9 + 2) + 58 = 9.m + 42 + 58 = 9.m + 90 chia hết cho 9 . Vậy C là hợp số

Ở trên mình làm vắn tắt, bạn nhân đa thức cụ thể ra nhé

25 tháng 4 2018

CHo F(x) = X^4 +x^2+-2 ạ

18 tháng 10 2020

https://olm.vn/hoi-dap/detail/227275074177.html

18 tháng 10 2020

Hai số nguyên tố cùng nhau là 2 số liền nhau và có UCLN và BCNN =1

Mà 2 số nguyên tố cùng nhau chỉ có một đó là 2;3

=>p=2+3

p=5

Mà 5 cũng là số nguyên tố

Vậy khi a và b là 2 số nguyên tố cùng nhau thì a+b sẽ ra được một số nguyên tố

Học tốt

27 tháng 7 2018

\(n^3-4n=n\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)

Vì n chẵn => n - 2 và n + 2 cũng là số chẵn

Có n(n-2)(n+2) chia hết cho 2 và 4

\(\Rightarrow n^3-4n⋮\left(2.4.2\right)=16\)

\(n^3+4n=n^3-n+5n=n\left(n^2-1\right)+5n=\left(n-1\right)n\left(n+1\right)+5n\)

Có \(\left(n-1\right)n\left(n+1\right)⋮2;3;4\)

\(5n⋮2\)

\(\Rightarrow n^3+4n⋮16\)

27 tháng 7 2018

Gọi n là 2k

\(\Rightarrow n^3-4n=\left(2k\right)^3-4.2k=8k^3-8k=8k\left(k^2-1\right)=8k.\left(k-1\right)\left(k+1\right)\)

Với k chẵn

\(\Rightarrow8k⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(1)

Với k lẻ

\(\Rightarrow k-1⋮2\Rightarrow8k\left(k-1\right)⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(2)

Từ (1) và (2)

\(\Rightarrow n^3-4n⋮16\)

Tương tự

                     

5 tháng 3 2020

Ta có:(a-b)-(b+c)-(c-a)-(a-b-c)

         =a-b-b-c-c+a-a+b+c

         =(a+a-a)-(b+b-b)-(c+c-c)

         =a-b-c(đpcm)

Ta có: \(\left(a-b\right)-\left(b+c\right)-\left(c-a\right)-\left(a-b-c\right)=a-b-c\)

\(\Leftrightarrow a-b-b-c-c+a-\left(a-b-c\right)=a-b-c\)

\(\Leftrightarrow2a-2b-2c-\left(a-b-c\right)=a-b-c\)

\(\Leftrightarrow a-b-c=a-b-c\left(đpcm\right)\)

hok tốt!!