Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 10^2003 + 125 = (10^2003 -10) + 135 Vì 135 chia hết cho 45 nên chỉ cần chứng minh B = 10^2003 - 10 chia hết cho 45
Ta có B = 10^2003 -10 =10.(10^2002 - 1) = 10.(10^1001 -1).(10^1001 + 1) = 999...90.(10^1001 + 1) chia hết cho 45 (đpcm)
Chú ý : 10^1001 - 1 = 999...9 Là số có 1001 chữ số 9
Bạn thấy thế nào với lời giải của mình?
b/ C = 543.799.111 + 58 = (60.9 + 3).(88.9 + 7).(11.9 + 2) + 58 = (9.k + 21).(11.9 + 2) + 58 = 9.m + 42 + 58 = 9.m + 90 chia hết cho 9 . Vậy C là hợp số
Ở trên mình làm vắn tắt, bạn nhân đa thức cụ thể ra nhé
Hai số nguyên tố cùng nhau là 2 số liền nhau và có UCLN và BCNN =1
Mà 2 số nguyên tố cùng nhau chỉ có một đó là 2;3
=>p=2+3
p=5
Mà 5 cũng là số nguyên tố
Vậy khi a và b là 2 số nguyên tố cùng nhau thì a+b sẽ ra được một số nguyên tố
Học tốt
Ta có:(a-b)-(b+c)-(c-a)-(a-b-c)
=a-b-b-c-c+a-a+b+c
=(a+a-a)-(b+b-b)-(c+c-c)
=a-b-c(đpcm)
Ta có: \(\left(a-b\right)-\left(b+c\right)-\left(c-a\right)-\left(a-b-c\right)=a-b-c\)
\(\Leftrightarrow a-b-b-c-c+a-\left(a-b-c\right)=a-b-c\)
\(\Leftrightarrow2a-2b-2c-\left(a-b-c\right)=a-b-c\)
\(\Leftrightarrow a-b-c=a-b-c\left(đpcm\right)\)
hok tốt!!
nảy sai rồi
a) 1
b) 2
c) 0
vì 0 ko phải số nguyên tố cũng ko là hợp số
xét n là số lẻ
=>(n+3) là số chẵn =>(n+3) (n+12) chia hết cho 2
xét n là số chẵn
=.(n+12) là số chẵn =>(n+3) (n+12) chia hết cho 2
P>3 suy ra P có dạng 3k+1 hoặc 3k+2
nếu P=3k+1 thì P+14=3k+1+14=3k+15 là hợp số (trái đề bài)
nếu P=3k+2 thì P+14=3K+2+14=3K+16 có thể là số nguyên tố(chọn)
P+7=3k+2+7=3k+9 là hợp số(đpcm)
Lời giải:
$543.799.111$ có tận cùng là $7$ (do $3.9.1$ có đuôi 7)
Do đó $543.799.111+58$ có tận cùng là $5$
$\Rightarrow 543.799.111+58\vdots 5$
Mà $543.799.111+58>5$ nên nó là hợp số.