chứng minh 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012 < 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không biết khó quá mà bạn biết bài này không giúp mình với mình cần gấp nha nick mình là Quách Ngọc Minh Xuân
Đặt B là tên biểu thức
Với mọi n thuộc N*, ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) (*)
Áp dụng (*), ta được:
\(B< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{1}{\sqrt{2013}}< 2\)
=> 3B = 1 + 1/3 +...+1/3^ 2011
=> 3B-B=2B = 1 - 1 / 3^2013 < 1 ( do 1 / 3^ 2013 >0) => B < 1 / 2 (đpcm)
Đặt A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011
3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012)
A= 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012
1/3.A= 1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013
=> 1/3.A-A=-2/3.A = (1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013) - ( 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012 )
=> -2/3.A= 1/3^2013 +1/3
=> A= (1/3^2013+1/3) : -2/3
Ta được A < 1/2
:D