Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011
3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^2010 + 1/3^2011) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012)
A= 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012
1/3.A= 1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013
=> 1/3.A-A=-2/3.A = (1/3^2+1/3^3+1/3^4+...+1/3^2012+1/3^2013) - ( 1/3+1/3^2+1/3^3+...+1/3^2011+1/3^2012 )
=> -2/3.A= 1/3^2013 +1/3
=> A= (1/3^2013+1/3) : -2/3
Ta được A < 1/2
:D
Ta có \(B=\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{2}{2010}+1\right)+\left(\frac{1}{2011}+1\right)+1\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2010}+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\)
B=2012.A
=>A/B=1/2012
\(3C=3+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}.\)
\(\Rightarrow3C-C=\frac{1}{3^{2013}}-3\)
\(\Rightarrow C=\frac{\frac{1}{3^{2013}}-3}{2}\le\frac{3}{2}\)
Study well
\(A=\frac{2!+\sqrt{3}}{2!}+\frac{3!+\sqrt{4}}{3!}+\frac{4!+\sqrt{5}}{4!}+....+\frac{2012!+\sqrt{2013}}{2012!}\)
\(=\frac{2!}{2!}+\frac{\sqrt{3}}{2!}+\frac{3!}{3!}+\frac{\sqrt{4}}{3!}+.....+\frac{2012!}{2012!}+\frac{\sqrt{2013}}{2012!}\)
\(=2012+\left(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+....+\frac{\sqrt{2011}}{2012!}\right)\)
Mà \(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+...+\frac{\sqrt{2013}}{2012!}>0\)
\(\Rightarrow A>2012+0=2012\)
Đề sai nên t sửa lại r nhé
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2012}}\)
=>3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}\)
=>3B-B=2B=1-\(\dfrac{1}{3^{2012}}\)
=>B=\(\dfrac{1}{2}-\dfrac{1}{2.3^{20112}}\)<1/2
vậy........
=> 3B = 1 + 1/3 +...+1/3^ 2011
=> 3B-B=2B = 1 - 1 / 3^2013 < 1 ( do 1 / 3^ 2013 >0) => B < 1 / 2 (đpcm)