K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

\(a^2 > 0 ⇔ \sqrt{a^2} > 0 \)

           \(⇔ |a| > 0\)

           \(⇔ \left[\begin{array}{} a > 0 \\ - a > 0 \end{array} \right . \)

           \(⇔ \left[\begin{array}{} a > 0 \\ a < 0 \end{array} \right . \)

           \(⇔ a ≠ 0\) (Điều phải chứng minh)

26 tháng 2 2022

\(a^2>0\Leftrightarrow a^2\ne0\)(vì a2 > 0 với mọi a)

           \(\Leftrightarrow a\ne0\)(Điều phải chứng minh)

a: |x|<a

=>x^2<a^2

=>-a<x<a

b: |x|>a

=>x^2>a^2

=>x>a hoặc x<-a

24 tháng 11 2019

Bạn ơi mình nói ngắn gọn thôi 

Quy đồng hai vế với (a+1)(b+1(c+1) phá ngoặc đơn là tìm được đáp án

NV
24 tháng 11 2019

\(a+b+c+2=abc\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

$\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}$

$\Leftrightarrow a+b=a+c+b+c+2\sqrt{(a+c)(b+c)}$

$\Leftrightarrow 2c+2\sqrt{(a+c)(b+c)}=0$

$\Leftrightarrow c+\sqrt{(a+c)(b+c)}=0$

\(\Leftrightarrow \left\{\begin{matrix} -c=\sqrt{(a+c)(b+c)}\\ c< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c^2=(c+a)(c+b)\\ c< 0\end{matrix}\right.\)

\( \Leftrightarrow \left\{\begin{matrix} ab+bc+ac=0\\ c< 0\end{matrix}\right.\Leftrightarrow \frac{ba+bc+ac}{abc}=0\) (do $a,b>0$)

$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$

 (đpcm)

 

 

 

 

22 tháng 5 2019

sai ngay dòng đầu 

\(x^2=0\Leftrightarrow\frac{x}{a}=\frac{0}{x}\)

vì khi x2=0 <=> x=0, mà x nằm ở mẫu thức => vô lí  

22 tháng 5 2019

Sai ở ngay đầu dòng :

Do x2 = 0 => x = 0 

Mà x nằm ở mẫu -> Vô lý.