Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm tắt ko hiểu thì hỏi
a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)
b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
Bài 3:
a) Ta có: \(x^2+3x+3\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\) là \(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)
b) Ta có: \(Q=x^2+2y^2+2xy-2y\)
\(=x^2+2xy+y^2+y^2-2y+1-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1
\(\frac{2}{x^2+2y^2+3}\le\frac{1}{xy+x+1}\)
\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\Leftrightarrow x=y=1\)
Ta có : \(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2ab+2b+2}\) ( AD BĐT Cô si cho a ; b dương ) ( 1 )
Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2bc+2c+2};\frac{1}{c^2+2a^2+3}\le\frac{1}{2ac+2a+2}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow P\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
a)Áp dụng BĐT AM-GM ta có:
\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)
\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)
Xảy ra khi \(x=y\)
b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)
Đúng với AM-GM 4 số
Xảy ra khi \(x=y=z=t\)
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
Bài 1 a chưa nghĩ ra. Thấy cái |x| hơi lạ.. Mà mình cũng ko chắc câu 1 b đâu nha:v
1b) \(B=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)
Đặt \(x^2-5x+5=t\)
\(B=\left(t-1\right)\left(t+1\right)+15=t^2+14\ge14\)
Đẳng thức xảy ra khi \(t=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy ....
Bài 2: a)BĐT \(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi x = y = 1
b) \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in\mathbb{R}\)
Ta có đpcm.
a) \(A=x^2+2\left|x\right|+2\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0;\forall x\\2\left|x\right|\ge0;\forall x\end{matrix}\right.\)\(\Rightarrow x^2+2\left|x\right|\ge0;\forall x\)
\(\Rightarrow x^2+2\left|x\right|+2\ge0+2;\forall x\)
Hay \(A\ge2;\forall x\)
Dấu "="xảy ra \(\Leftrightarrow x=0\)
Vậy MIN A=2 \(\Leftrightarrow x=0\)