\(x^2-xy+y>0\) (với mọi x,y; t/m: \(x^2+y^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

làm tắt ko hiểu thì hỏi 

a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)

b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)

\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

21 tháng 4 2020

Cảm ơn ạ =)

Y
22 tháng 3 2019

\(\frac{2}{x^2+2y^2+3}\le\frac{1}{xy+x+1}\)

\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\Leftrightarrow x=y=1\)

22 tháng 3 2019

Ta có : \(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2ab+2b+2}\) ( AD BĐT Cô si cho a ; b dương ) ( 1 )

Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2bc+2c+2};\frac{1}{c^2+2a^2+3}\le\frac{1}{2ac+2a+2}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow P\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\left(abc=1\right)\)

\(=\frac{1}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có:

\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)

\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)

Xảy ra khi \(x=y\)

b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)

Đúng với AM-GM 4 số

Xảy ra khi \(x=y=z=t\)

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

2 tháng 12 2016

vay la sao

2 tháng 12 2016

thì là các bạn chứng minh sao cho vế trái >= vế phải

13 tháng 10 2019

Bài 1 a chưa nghĩ ra. Thấy cái |x| hơi lạ.. Mà mình cũng ko chắc câu 1 b đâu nha:v

1b) \(B=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+15\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)

Đặt \(x^2-5x+5=t\)

\(B=\left(t-1\right)\left(t+1\right)+15=t^2+14\ge14\)

Đẳng thức xảy ra khi \(t=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ....

Bài 2: a)BĐT \(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi x = y = 1

b) \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in\mathbb{R}\)

Ta có đpcm.

15 tháng 10 2019

a) \(A=x^2+2\left|x\right|+2\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0;\forall x\\2\left|x\right|\ge0;\forall x\end{matrix}\right.\)\(\Rightarrow x^2+2\left|x\right|\ge0;\forall x\)

\(\Rightarrow x^2+2\left|x\right|+2\ge0+2;\forall x\)

Hay \(A\ge2;\forall x\)

Dấu "="xảy ra \(\Leftrightarrow x=0\)

Vậy MIN A=2 \(\Leftrightarrow x=0\)