a) x/3 + 4/y = 1/5
b) 2xy - 6x +y = 13
Giúp với, đang rất gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+x+2y=13\\ \Rightarrow2xy+x+2y+1-1=13\\ \Rightarrow\left(2xy+2y\right)+\left(x+1\right)=13+1\\ \Rightarrow2y\left(x+1\right)+\left(x+1\right)=14\\ \Rightarrow\left(x+1\right)\left(2y+1\right)=14\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(14\right)\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(x+1\) | \(-14\) | \(-7\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(7\) | \(14\) |
\(2y+1\) | \(-1\) | \(-2\) | \(-7\) | \(-14\) | \(14\) | \(7\) | \(2\) | \(1\) |
\(x\) | \(-15\) | \(-8\) | \(-3\) | \(-2\) | \(0\) | \(1\) | \(6\) | \(13\) |
\(y\) | \(-1\) | \(-\dfrac{3}{2}\) | \(-4\) | \(-\dfrac{15}{2}\) | \(\dfrac{13}{2}\) | \(3\) | \(\dfrac{1}{2}\) | \(0\) |
Vì \(x,y\in N\Rightarrow\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
a)\(y=\dfrac{5}{3}-\left(\dfrac{7}{12}:\dfrac{5}{6}\right)=\dfrac{5}{3}-\dfrac{7}{10}=\dfrac{50}{30}-\dfrac{21}{30}=\dfrac{29}{30}\)
b)\(y=\dfrac{4}{15}:\left[\left(\dfrac{4}{5}+\dfrac{1}{2}\right)\times\dfrac{4}{13}\right]=\dfrac{4}{15}:\left[\left(\dfrac{8}{10}+\dfrac{5}{10}\right)\times\dfrac{4}{13}\right]\)
\(y=\dfrac{4}{15}:\left[\dfrac{13}{10}\times\dfrac{4}{13}\right]=\dfrac{4}{15}:\dfrac{2}{5}=\dfrac{2}{3}\)
a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)
\(=x^4-y^4\)
Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:
\(A=2^4-\left(-\frac{1}{2}\right)^4\)
\(=16-\frac{1}{16}\)
\(=\frac{255}{16}\)
Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)
b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\)
Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:
\(B=3^5-\left(-2\right)^5\)
\(=243-\left(-32\right)\)
\(=243+32=275\)
Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2
c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)
\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)
\(=x^4-2x^3y+2y^4+2x^3\)
Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:
\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)
\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)
\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)
\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)
Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)
9) \(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=b^2\left[a^2+2ab+b^2+a\left(a-b\right)+b\left(a-b\right)+a^2-2ab+b^2\right]\)
\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2+a^2-2ab+b^2\right)\)
\(=b^2\left(3a^2+b^2\right)\)
10) \(\left(6x-1\right)^2-\left(3x+2\right)^2\)
\(=\left(6x-1-3x-2\right)\left(6x-1+3x+2\right)\)
\(=\left(3x-3\right)\left(9x+1\right)\)
11) \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
12) \(\left(x^2-25\right)^2-\left(x-5\right)^2\)
\(=\left(x^2-25-x+5\right)\left(x^2-25+x-5\right)\)
\(=\left(x^2-x-20\right)\left(x^2-30+x\right)\)
13) \(x^6-x^4+2x^3+2x^2\)
\(=x^6-x^4+2x^3+2x^2-1+1\)
\(=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)
\(=\left[\left(x^3\right)^2+2x^3.1+1^2\right]-\left[\left(x^2\right)^2-2x^2.1+1^2\right]\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2\)
\(=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)\)
\(=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
1) \(\left(x+y\right)^2-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
2) \(100-\left(3x-y\right)^2\)
\(=10^2-\left(3x-y\right)^2\)
\(=\left(10-3x+y\right)\left(10+3x-y\right)\)
3) \(64x^2-\left(8a+b\right)^2\)
\(=\left(8x\right)^2-\left(8a+b\right)^2\)
\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)
4) \(4a^2b^4-c^4d^2\)
\(=\left(2ab^2\right)^2-\left(c^2d\right)^2\)
\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)
5) Đề đúng ko vậy ạ?
6) \(16x^3+54y^3\)
\(=2\left(8x^3+27y^3\right)\)
\(=2\left[\left(2x\right)^3+\left(3y\right)^3\right]\)
\(=2\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)
\(=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
7) \(8x^3-y^3\)
\(=\left(2x\right)^3-y^3\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2xy+y^2\right]\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
8) \(\left(a+b\right)^2-\left(2ab-b\right)^2\)
\(=\left(a+b-2ab+b\right)\left(a+b+2ab-b\right)\)
\(=\left(a+2b-2ab\right)\left(a+2ab\right)\)
a) ta có \(x+y=1\Rightarrow\left(x+y\right)^2=1\)
Áp dụng bđt cô si ta có \(2xy\le x^2+y^2\Rightarrow4xy\le\left(x+y\right)^2=1\Rightarrow2xy\le\frac{1}{2}\)
=> \(\frac{1}{2xy}\ge2\)
dấu = xảy ra <=> x=y=1/2
a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)
b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)
c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)
\(=ax\left(x-a\right)\)
a)\(\frac{x}{3}+\frac{4}{y}=\frac{xy+12}{3y}=\frac{1}{5}\)
\(5xy+60=3y\)
\(5xy-3y=-60\)
\(y\left(5x-3\right)=-60\)
b)\(2x\left(y-3\right)+y-3=10\)
\(\left(2x+1\right)\left(y-3\right)=10\)
Lập bảng như trên nhé. Ước của 10