K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

\(\dfrac{a^3}{a^2+bc}=a-\dfrac{abc}{a^2+bc}\ge a-\dfrac{abc}{2a\sqrt{bc}}=a-\dfrac{\sqrt{bc}}{2}\)

\(\dfrac{b^3}{b^2+ca}\ge b-\dfrac{\sqrt{ac}}{2};\dfrac{c^3}{c^2+ab}\ge c-\dfrac{\sqrt{ab}}{2}\)

\(\Rightarrow M\ge a+b+c-\left(\dfrac{\sqrt{ab}}{2}+\dfrac{\sqrt{bc}}{2}+\dfrac{\sqrt{ca}}{2}\right)=2022-\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\right)\)

\(do:\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)

\(\Rightarrow M\ge2022-\dfrac{a+b+c}{2}=2022-\dfrac{2022}{2}=1011\)

\(min_M=2021\Leftrightarrow a=b=c=674\)

 

15 tháng 2 2022

có đoạn  bạn sửa lại tí nhé tại lúc đầu mình đọc đề thành \(a+b+c=2022\)

\(M\ge a+b+c-\left(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\right)\ge a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\ge\dfrac{2022}{2}=1011\)

NV
2 tháng 12 2021

\(P=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+1}{a+b+c-abc}=\dfrac{\left(a+b+c\right)^2+1}{a+b+c-abc}\ge\dfrac{\left(a+b+c\right)^2+1}{a+b+c}\)

\(\Rightarrow P\ge a+b+c+\dfrac{1}{a+b+c}\) (1)

\(P=\dfrac{a^2+b^2+c^2+3\left(ab+bc+ca\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}=\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(P=\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{a+b+c}\left(\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+c+b}{a+c}\right)\)

\(P=\dfrac{1}{a+b+c}\left(3+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\right)\)

\(P\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2}\right)=\dfrac{3}{a+b+c}+\dfrac{a+b+c}{2}\)

\(\Rightarrow3P\ge\dfrac{3}{2}\left(a+b+c\right)+\dfrac{9}{a+b+c}\) (2)

Cộng vế (1) và (2):

\(\Rightarrow4P\ge\dfrac{5}{2}\left(a+b+c\right)+\dfrac{10}{a+b+c}\ge2\sqrt{\dfrac{50\left(a+b+c\right)}{2\left(a+b+c\right)}}=10\)

\(\Rightarrow P\ge\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;0\right)\) và các hoán vị

NV
17 tháng 4 2021

\(P\ge\dfrac{3abc}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{c^2+a^2}{b^2+\dfrac{c^2+a^2}{2}}\)

\(P\ge\dfrac{3}{2}+2\left(\dfrac{a^2+b^2}{a^2+c^2+b^2+c^2}+\dfrac{b^2+c^2}{a^2+b^2+a^2+c^2}+\dfrac{a^2+c^2}{a^2+b^2+b^2+c^2}\right)\)

Đặt \(\left(a^2+b^2;b^2+c^2;a^2+c^2\right)=\left(x;y;z\right)\)

\(\Rightarrow P\ge\dfrac{3}{2}+2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{3}{2}+2\left(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{yz+xy}+\dfrac{z^2}{xz+yz}\right)\)

\(P\ge\dfrac{3}{2}+\dfrac{2\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3}{2}+\dfrac{3\left(xy+yz+zx\right)}{xy+yz+zx}=3+\dfrac{3}{2}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

15 tháng 3 2021

Đặt a + b + c = t \(\left(3\ge t\ge\sqrt{3}\right)\).

Ta có \(P=\dfrac{t^2-3}{2}+3t=\dfrac{t^2+6t-3}{2}=\dfrac{\left(t-\sqrt{3}\right)\left(t+6+\sqrt{3}\right)+6\sqrt{3}}{2}\ge3\sqrt{3}\).

Đẳng thức xảy ra khi a = 0, b = \(\sqrt{3}\), c = 0.

22 tháng 12 2018

Áp dụng bđt AM-GM:

\(M\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}+\dfrac{b^3}{b^2+\dfrac{b^2+c^2}{2}+c^2}+\dfrac{c^3}{c^2+\dfrac{a^2+c^2}{2}+a^2}\)

\(=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}+\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}+\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\)

\(=\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)

Xét:

\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\)

\(=a-\dfrac{ab^2}{a^2+b^2}+b-\dfrac{b^2c}{b^2+c^2}+c-\dfrac{c^2a}{c^2+a^2}\)

\(\ge a+b+c-\dfrac{ab^2}{2ab}-\dfrac{b^2c}{2bc}-\dfrac{c^2a}{2ac}=a+b+c-\dfrac{a}{2}-\dfrac{b}{2}-\dfrac{c}{2}=\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow M\ge1."="\Leftrightarrow a=b=c=1\)

22 tháng 12 2018

dòng thứ 5 từ dưới lên cái đầu là bc^2 nhé. Cái sau là ca^2

14 tháng 1 2021

Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).

Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).

Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).

\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).

Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\)\(9t^3-9t^2+4t+12>4t+12>0\).

Nên \(P\ge\dfrac{28}{9}\).

Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.

Vậy...

 

NV
16 tháng 9 2021

\(P=\dfrac{a^3}{b^2+ab+bc+ca}+\dfrac{b^3}{c^2+ab+bc+ca}+\dfrac{c^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}\)

Ta có:

\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge\dfrac{3a}{4}\)

\(\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3b}{4}\)

\(\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3c}{4}\)

Cộng vế:

\(P+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow P\ge\dfrac{1}{4}\left(a+b+c\right)\ge\dfrac{1}{4}.\sqrt{3\left(ab+bc+ca\right)}=\dfrac{\sqrt{3}}{4}\)

16 tháng 9 2021

giúp em giải dấu "=" với ạ :<

26 tháng 8 2023

Để tìm giá trị nhỏ nhất của biểu thức B = ab + bc + ca + a^3 + b^3 + c^3 / 5(ab + bc + ca) + 1, ta có thể sử dụng phương pháp đạo hàm.

Đầu tiên, ta tính đạo hàm của biểu thức B theo a, b và c. Đạo hàm riêng của B theo a, b và c được tính như sau:

∂B/∂a = 3a^2 + b^3 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(b + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂b = a^3 + 3b^2 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂c = a^3 + b^3 + 3c^2 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + b) / (5(ab + bc + ca) + 1)^2

Tiếp theo, ta giải hệ phương trình ∂B/∂a = ∂B/∂b = ∂B/∂c = 0 để tìm các điểm cực trị của biểu thức B.

Sau khi tìm được các điểm cực trị, ta so sánh giá trị của B tại các điểm cực trị và tại các điểm biên của miền xác định để tìm giá trị nhỏ nhất của B.

Tuy nhiên, việc giải phương trình và tính toán các giá trị có thể làm cho quá trình này trở nên phức tạp và mất nhiều thời gian.

Do đó, để tìm giá trị nhỏ nhất của biểu thức B, ta có thể sử dụng phương pháp khác như phương pháp đặt tính chất của hàm để giải quyết bài toán này.