Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+1}{a+b+c-abc}=\dfrac{\left(a+b+c\right)^2+1}{a+b+c-abc}\ge\dfrac{\left(a+b+c\right)^2+1}{a+b+c}\)
\(\Rightarrow P\ge a+b+c+\dfrac{1}{a+b+c}\) (1)
\(P=\dfrac{a^2+b^2+c^2+3\left(ab+bc+ca\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}=\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(P=\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{a+b+c}\left(\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+c+b}{a+c}\right)\)
\(P=\dfrac{1}{a+b+c}\left(3+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\right)\)
\(P\ge\dfrac{1}{a+b+c}\left(3+\dfrac{\left(a+b+c\right)^2}{2}\right)=\dfrac{3}{a+b+c}+\dfrac{a+b+c}{2}\)
\(\Rightarrow3P\ge\dfrac{3}{2}\left(a+b+c\right)+\dfrac{9}{a+b+c}\) (2)
Cộng vế (1) và (2):
\(\Rightarrow4P\ge\dfrac{5}{2}\left(a+b+c\right)+\dfrac{10}{a+b+c}\ge2\sqrt{\dfrac{50\left(a+b+c\right)}{2\left(a+b+c\right)}}=10\)
\(\Rightarrow P\ge\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;0\right)\) và các hoán vị
\(P\ge\dfrac{3abc}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{c^2+a^2}{b^2+\dfrac{c^2+a^2}{2}}\)
\(P\ge\dfrac{3}{2}+2\left(\dfrac{a^2+b^2}{a^2+c^2+b^2+c^2}+\dfrac{b^2+c^2}{a^2+b^2+a^2+c^2}+\dfrac{a^2+c^2}{a^2+b^2+b^2+c^2}\right)\)
Đặt \(\left(a^2+b^2;b^2+c^2;a^2+c^2\right)=\left(x;y;z\right)\)
\(\Rightarrow P\ge\dfrac{3}{2}+2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{3}{2}+2\left(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{yz+xy}+\dfrac{z^2}{xz+yz}\right)\)
\(P\ge\dfrac{3}{2}+\dfrac{2\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3}{2}+\dfrac{3\left(xy+yz+zx\right)}{xy+yz+zx}=3+\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Đặt a + b + c = t \(\left(3\ge t\ge\sqrt{3}\right)\).
Ta có \(P=\dfrac{t^2-3}{2}+3t=\dfrac{t^2+6t-3}{2}=\dfrac{\left(t-\sqrt{3}\right)\left(t+6+\sqrt{3}\right)+6\sqrt{3}}{2}\ge3\sqrt{3}\).
Đẳng thức xảy ra khi a = 0, b = \(\sqrt{3}\), c = 0.
Áp dụng bđt AM-GM:
\(M\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}+\dfrac{b^3}{b^2+\dfrac{b^2+c^2}{2}+c^2}+\dfrac{c^3}{c^2+\dfrac{a^2+c^2}{2}+a^2}\)
\(=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}+\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}+\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\)
\(=\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Xét:
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\)
\(=a-\dfrac{ab^2}{a^2+b^2}+b-\dfrac{b^2c}{b^2+c^2}+c-\dfrac{c^2a}{c^2+a^2}\)
\(\ge a+b+c-\dfrac{ab^2}{2ab}-\dfrac{b^2c}{2bc}-\dfrac{c^2a}{2ac}=a+b+c-\dfrac{a}{2}-\dfrac{b}{2}-\dfrac{c}{2}=\dfrac{a+b+c}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow M\ge1."="\Leftrightarrow a=b=c=1\)
dòng thứ 5 từ dưới lên cái đầu là bc^2 nhé. Cái sau là ca^2
Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).
Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).
Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).
\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).
Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\); \(9t^3-9t^2+4t+12>4t+12>0\).
Nên \(P\ge\dfrac{28}{9}\).
Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.
Vậy...
\(P=\dfrac{a^3}{b^2+ab+bc+ca}+\dfrac{b^3}{c^2+ab+bc+ca}+\dfrac{c^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}\)
Ta có:
\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge\dfrac{3a}{4}\)
\(\dfrac{b^3}{\left(a+c\right)\left(b+c\right)}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3c}{4}\)
Cộng vế:
\(P+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow P\ge\dfrac{1}{4}\left(a+b+c\right)\ge\dfrac{1}{4}.\sqrt{3\left(ab+bc+ca\right)}=\dfrac{\sqrt{3}}{4}\)
Để tìm giá trị nhỏ nhất của biểu thức B = ab + bc + ca + a^3 + b^3 + c^3 / 5(ab + bc + ca) + 1, ta có thể sử dụng phương pháp đạo hàm.
Đầu tiên, ta tính đạo hàm của biểu thức B theo a, b và c. Đạo hàm riêng của B theo a, b và c được tính như sau:
∂B/∂a = 3a^2 + b^3 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(b + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂b = a^3 + 3b^2 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂c = a^3 + b^3 + 3c^2 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + b) / (5(ab + bc + ca) + 1)^2
Tiếp theo, ta giải hệ phương trình ∂B/∂a = ∂B/∂b = ∂B/∂c = 0 để tìm các điểm cực trị của biểu thức B.
Sau khi tìm được các điểm cực trị, ta so sánh giá trị của B tại các điểm cực trị và tại các điểm biên của miền xác định để tìm giá trị nhỏ nhất của B.
Tuy nhiên, việc giải phương trình và tính toán các giá trị có thể làm cho quá trình này trở nên phức tạp và mất nhiều thời gian.
Do đó, để tìm giá trị nhỏ nhất của biểu thức B, ta có thể sử dụng phương pháp khác như phương pháp đặt tính chất của hàm để giải quyết bài toán này.
\(M\ge3\left(ab+bc+ca\right)+2\sqrt{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}=3\left(ab+bc+ca\right)+2\sqrt{1-2\left(ab+bc+ca\right)}\)
\(\text{Đặt }t=\sqrt{1-2\left(ab+bc+ca\right)}\Rightarrow ab+bc+ca=\frac{1-t^2}{2}\)
\(\text{Ta có: }0\le ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)
\(\Rightarrow ab+bc+ca\in\left[0;\frac{1}{3}\right]\)
\(\Rightarrow-2\left(ab+bc+ca\right)\in\left[-\frac{2}{3};0\right]\)
\(\Rightarrow1-2\left(ab+bc+ca\right)\in\left[\frac{1}{3};1\right]\)
\(\Rightarrow t\in\left[\frac{1}{\sqrt{3}};1\right]\)
\(M=3.\frac{1-t^2}{2}+2t=-\frac{3}{2}t^2+2t+\frac{3}{2}\)
Lập bảng biến thiên hàm bậc 2, suy ra \(\text{Min }M\text{ (}t\in\left[\frac{1}{\sqrt{3}};1\right]\text{) }=2\text{ tại }t=1\)
Vậy GTNN của M là 2 khi t = 1 hay \(ab+bc+ca=0\Leftrightarrow\left(a;b;c\right)=\left(1;0;0\right);\left(0;0;1\right);\left(0;1;0\right)\)
Lời giải:
$A=a-\frac{ac}{c+a^2}+b-\frac{ab}{a+b^2}+c-\frac{bc}{b+c^2}$
$=\sum a-\sum \frac{ac}{c+a^2}$
Áp dụng BĐT AM-GM: $c+a^2\geq 2a\sqrt{c}$
$\Rightarrow A\geq \sum a-\frac{1}{2}\sum \sqrt{c}$
Áp dụng BĐT Cauchy-Schwarz:
$(\sum \sqrt{c})^2\leq (c+a+b)(1+1+1)$
$\Rightarrow \sum \sqrt{c}\leq 3\sum a$
Do đó $A\geq \sum a-\frac{1}{2}\sqrt{3\sum a}$
Đặt $\sqrt{3\sum a}=t$ thì $A\geq \frac{t^2}{3}-\frac{t}{2}(*)$
Từ điều kiện $ab+bc+ac=3abc\Rightarrow 3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
Áp dụng BĐT Cauchy-Schwarz:
$3=\sum \frac{1}{a}\geq \frac{9}{\sum a}\Rightarrow \sum a\geq 3$
$\Rightarrow t=\sqrt{3\sum a}\geq 3$
Do đó:
$\frac{t^2}{3}-\frac{t}{2}=(t-3)(\frac{t}{3}+\frac{1}{2})+\frac{3}{2}\geq \frac{3}{2}$ với mọi $t\geq 3(**)$
Từ $(*); (**)\Rightarrow A\geq \frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$ khi $a=b=c=1$
\(\dfrac{a^3}{a^2+bc}=a-\dfrac{abc}{a^2+bc}\ge a-\dfrac{abc}{2a\sqrt{bc}}=a-\dfrac{\sqrt{bc}}{2}\)
\(\dfrac{b^3}{b^2+ca}\ge b-\dfrac{\sqrt{ac}}{2};\dfrac{c^3}{c^2+ab}\ge c-\dfrac{\sqrt{ab}}{2}\)
\(\Rightarrow M\ge a+b+c-\left(\dfrac{\sqrt{ab}}{2}+\dfrac{\sqrt{bc}}{2}+\dfrac{\sqrt{ca}}{2}\right)=2022-\left(\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\right)\)
\(do:\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)
\(\Rightarrow M\ge2022-\dfrac{a+b+c}{2}=2022-\dfrac{2022}{2}=1011\)
\(min_M=2021\Leftrightarrow a=b=c=674\)
có đoạn bạn sửa lại tí nhé tại lúc đầu mình đọc đề thành \(a+b+c=2022\)
\(M\ge a+b+c-\left(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\right)\ge a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\ge\dfrac{2022}{2}=1011\)