\(P=\sqrt{a^2+b^2+c^2}+\dfrac{ab+bc+ca}{2}+\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).

Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).

Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).

\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).

Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\)\(9t^3-9t^2+4t+12>4t+12>0\).

Nên \(P\ge\dfrac{28}{9}\).

Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.

Vậy...

 

9 tháng 1 2021

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{3}{4}\). (1)

Đặt \(\sqrt{a^2+b^2+c^2}=t\Rightarrow\sqrt{\dfrac{4}{3}}\le t\le2\).

\(\dfrac{3\sqrt{a^2+b^2+c^2}}{4}+\dfrac{ab+bc+ca}{2}=\dfrac{3t}{4}+\dfrac{4-2t^2}{4}=\dfrac{\left(2-t\right)\left(2t+1\right)}{4}+\dfrac{3}{2}\ge\dfrac{3}{2}\). (2)

Cộng vế với vế của (1), (2) ta được \(P\ge\dfrac{9}{4}\).

...

 

8 tháng 9 2015

bạn có thể vào mục câu hỏi tương tự

http://olm.vn/hoi-dap/question/162856.html

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

19 tháng 11 2018

1) Áp dụng bđt Cauchy:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)

Xong

3 tháng 9 2017

Ta có :

\(\frac{a^2}{a+b}=\frac{a\left(a+b\right)-ab}{a+b}=a-\frac{ab}{a+b}\text{≥}a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)

Tương tự : \(\hept{\begin{cases}\frac{b^2}{b+c}\text{≥}b-\frac{\sqrt{bc}}{2}\left(2\right)\\\frac{c^2}{c+a}\text{≥}c-\frac{\sqrt{ac}}{2}\left(3\right)\end{cases}}\)

Cộng vế với vế của (1);(2)(;(3) lại ta được :

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\text{≥}a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ac}}{2}\)

\(\Leftrightarrow A\text{≥}\left(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\right)+\left(\frac{\sqrt{ab}}{2}+\frac{\sqrt{bc}}{2}+\frac{\sqrt{ac}}{2}\right)\)

Lại lại có : \(a+b+c\text{≥}\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (tự chứng minh)

\(\Rightarrow a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\text{≥}0\)

Nên \(A\text{≥}\frac{1}{2}\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=\frac{1}{2}\)có GTNN là 1/2

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

11 tháng 5 2019

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}=\frac{2}{\sqrt{3}}\left(1\right)\)

Từ giả thuyết suy ra \(0\le a,b,c\le2\)

\(\Rightarrow\hept{\begin{cases}ab\ge0\\bc\ge0\\ca\ge0\end{cases}\left(2\right)}\)

\(\Rightarrow\hept{\begin{cases}a^2\le2a\\b^2\le2b\\c^2\le2c\end{cases}\left(3\right)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)suy ra:

\(P\ge\frac{2}{\sqrt{3}}+\frac{1}{4}=\frac{8+\sqrt{3}}{4\sqrt{3}}\)

11 tháng 5 2019

tui đăng nhầm nhe đang làm nháp lở đăng

7 tháng 3 2017

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{{}\begin{matrix}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{matrix}\right.\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\) ( đpcm )

\(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)

\(\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)( đpcm )

8 tháng 3 2017

Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:

\(\sum\frac{a^2}{a+\sqrt[3]{bc}}\geq\sum\frac{a^2}{a+\frac{b+c+1}{3}}=\sum\frac{9a^2}{3(3a+b+c)+a+b+c}\)

\(=\sum\frac{9a^2}{10a+4b+4c}\geq\frac{9(a+b+c)^2}{(10a+4b+4c)}=\frac{9(a+b+c)^2}{18(a+b+c)}=\frac{3}{2}\)