A = 1/1.3 + 2/3.7 + 3/7.13 + ... +10/91.111
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:1/1*3+2/3*7+3/7*13+4/13*21+5/21*31
=1/2(2/1*3+4/3*7+6/7*13+8/13*21+10/21*31)
=1/2(1-1/3+1/3-1/7+...+1/21-1/31)
=1/2*30/31=15/31
\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2023}\\ A=\dfrac{2023}{2023}-\dfrac{1}{2023}\\ A=\dfrac{2022}{2023}\)
a; C = \(\dfrac{3}{1.3}\) + \(\dfrac{3}{3.5}\) + \(\dfrac{3}{3.7}\) + ... + \(\dfrac{3}{49.51}\)
C = \(\dfrac{3}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{49.51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{51}\))
C = \(\dfrac{3}{2}\).\(\dfrac{50}{51}\)
C = \(\dfrac{25}{17}\)
biểu thức trên = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}< 1\)
vậy A<1
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{101.103}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{101.103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{101}-\frac{1}{103}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{103}\right)\)
=\(\frac{1}{2}.\frac{102}{103}\)
=\(\frac{51}{103}\)
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + ... + \(\dfrac{1}{101.103}\)
A = \(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{101.103}\))
A = \(\dfrac{1}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ... + \(\dfrac{1}{101}\) - \(\dfrac{1}{103}\))
A = \(\dfrac{1}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{103}\))
A = \(\dfrac{1}{2}\). \(\dfrac{102}{103}\)
A = \(\dfrac{51}{103}\)
Em ơi thừa số thứ ba phải là \(\dfrac{1}{5.7}\) mới đúng em nhé.
=>A=1/2.(2/1.3+4/3.7+6/7.13+...+20/91.111)
=>A=1/2.(3-1/1.3+7-3/3.7+13-7/7.13+...+111-91/91.111)
=>A=1/2.(1-1/3+1/3-1/7+1/7-1/13+...+1/91-1/111)
=>A=1/2.(1-1/111)
=>A=1/2.100/111
=>A=50/111
T*ck cho mìn nhóe!!!