K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)

=>\(\dfrac{m+m-1}{m-1}\ne0\)

=>\(\dfrac{2m-1}{m-1}\ne0\)

=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)

\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)

Để x và y trái dấu thì x*y<0

=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)

=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)

=>4m+3>0

=>m>-3/4

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)

2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)

=>\(2m-1\in\left\{1;-1;5;-5\right\}\)

=>\(2m\in\left\{2;0;6;-4\right\}\)

=>\(m\in\left\{1;0;3;-2\right\}\)

Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

Ta có: \(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m\left(1-my\right)+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m-m^2\cdot y+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\\y\left(-m^2+4\right)=2-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\y=\dfrac{-\left(m-2\right)}{-\left(m^2-4\right)}=\dfrac{1}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{1}{m+2}\\x=1-\dfrac{m}{m+2}=\dfrac{m+2-m}{m+2}=\dfrac{2}{m+2}\end{matrix}\right.\)

x+y>-5

=>\(\dfrac{2}{m+2}+\dfrac{1}{m+2}>-5\)

=>\(\dfrac{3}{m+2}+5>0\)

=>\(\dfrac{3+5m+10}{m+2}>0\)

=>\(\dfrac{5m+13}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}5m+13>0\\m+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-\dfrac{13}{5}\\m>-2\end{matrix}\right.\)

=>\(m>-2\)

TH2: \(\left\{{}\begin{matrix}5m+13< 0\\m+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -\dfrac{13}{5}\\m< -2\end{matrix}\right.\)

=>\(m< -\dfrac{13}{5}\)

Vậy: \(\left[{}\begin{matrix}m< -\dfrac{13}{5}\\\left\{{}\begin{matrix}m>-2\\m\ne2\end{matrix}\right.\end{matrix}\right.\)

18 tháng 5 2021

$\begin{cases}x+my=m+1\\y+mx=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y+m(m+1-my)=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y-my^2+m^2+m=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y(m^2-1)=m^2-2m+1\\\end{cases}$
Để HPT có nghiệm duy nhất thì $m^2-1 \neq 0\\\Leftrightarrow m \ne \pm1$
$\Leftrightarrow\begin{cases}y=\dfrac{(m-1)^2}{(m-1)(m+1)}=\dfrac{m-1}{m+1}\\x=m+1-my=\dfrac{(m+1)^2-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\\end{cases}$
$\Rightarrow xy=\dfrac{(3m+1)(m-1)}{(m+1)^2}$
$=\dfrac{3m^2-2m-1}{(m+1)^2}$
Xét $xy+1$
$=\dfrac{3m^2-2m-1+m^2+2m+1}{(m+1)^2}$
$=\dfrac{4m^2}{(m+1)^2} \ge 0$
$\Rightarrow xy \ge -1$
Dấu "=" xảy ra khi $m=0$
Vậy m=0 thì HPT có nghiệm duy nhất và $min_{xy}=-1$

22 tháng 1 2022

a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)

 Khi \(m=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)

Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)

Vậy...