Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Khi \(m=-\sqrt{2}\). HPT tương đương:
\(\left\{\begin{matrix} (-\sqrt{2}+1)x-y=3\\ -\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\)
Cộng theo vế: \(\Rightarrow (1-2\sqrt{2})x=3-\sqrt{2}\Rightarrow x=\frac{3-\sqrt{2}}{1-2\sqrt{2}}=\frac{1-5\sqrt{2}}{7}\)
\(\Rightarrow y=(m+1)x-3=\frac{(-\sqrt{2}+1)(1-5\sqrt{2})}{7}-3=-\frac{10+6\sqrt{2}}{7}\)
b)
\(\left\{\begin{matrix} (m+1)x-y=3\\ mx+y=m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=(m+1)x-3\\ mx+y=3\end{matrix}\right.\)
\(\Rightarrow mx+[(m+1)x-3]=m\)
\(\Leftrightarrow x(2m+1)=m+3\)
Để hệ có bộ nghiệm duy nhất thì $x$ là duy nhất.
Với \(m=-\frac{1}{2}\Rightarrow x.0=\frac{5}{2}\) (vô lý, pt vô nghiệm)
Với \(m\neq -\frac{1}{2}\), pt có nghiệm duy nhất \(x=\frac{m+3}{2m+1}\)
\(\Rightarrow y=(m+1)x-3=\frac{m^2-2m}{2m+1}\)
Do đó: \(x+y=\frac{m^2-m+3}{2m+1}\)
Để \(x+y>0\Leftrightarrow \frac{m^2-m+3}{2m+1}>0\Leftrightarrow \frac{(m-\frac{1}{2})^2+\frac{11}{4}}{2m+1}>0\)
\(\Leftrightarrow 2m+1>0\Leftrightarrow m> \frac{-1}{2}\)
Vậy đk là \(m> \frac{-1}{2}\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
x=(2m+3)/(m^2+1)
y=(3m-2)/(m^2+1)
y=x-1<=> (3m-2)/(m^2+1)=(2m+3-m^2-1)/(m^2+1)
<=>m^2+m-4=0=>\(\left[\begin{matrix}m=\frac{-1-\sqrt{17}}{2}\\m=\frac{-1+\sqrt{17}}{2}\end{matrix}\right.\)
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-y=2\\ x-4y=-1\end{matrix}\right.\Rightarrow (x-y)-(x-4y)=2-(-1)\)
\(\Leftrightarrow 3y=3\Rightarrow y=1\)
\(\Rightarrow x=2+y=3\)
Vậy HPT có nghiệm $(x,y)=(3,1)$
b)
\(\left\{\begin{matrix} x-my=2\\ mx-4y=m-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=my+2\\ mx-4y=m-2\end{matrix}\right.\)
\(\Rightarrow m(my+2)-4y=m-2\)
\(\Leftrightarrow y(m^2-4)=-(m+2)(*)\)
Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thfi $(*)$ cũng phải có nghiệm $y$ duy nhất. Điều này xảy ra khi mà \(m^2-4\neq 0\Leftrightarrow (m-2)(m+2)\neq 0\Leftrightarrow m\ne \pm 2\)
Khi đó: \(y=\frac{-(m+2)}{m^2-4}=\frac{1}{2-m}\)
Để \(y>0\Leftrightarrow \frac{1}{2-m}>0\Leftrightarrow 2-m>0\Leftrightarrow m< 2\)
Vậy $m< 2$ và $m\neq -2$
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-y=2\\ x-4y=-1\end{matrix}\right.\Rightarrow (x-y)-(x-4y)=2-(-1)\)
\(\Leftrightarrow 3y=3\Rightarrow y=1\)
\(\Rightarrow x=2+y=3\)
Vậy HPT có nghiệm $(x,y)=(3,1)$
b)
\(\left\{\begin{matrix} x-my=2\\ mx-4y=m-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=my+2\\ mx-4y=m-2\end{matrix}\right.\)
\(\Rightarrow m(my+2)-4y=m-2\)
\(\Leftrightarrow y(m^2-4)=-(m+2)(*)\)
Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thfi $(*)$ cũng phải có nghiệm $y$ duy nhất. Điều này xảy ra khi mà \(m^2-4\neq 0\Leftrightarrow (m-2)(m+2)\neq 0\Leftrightarrow m\ne \pm 2\)
Khi đó: \(y=\frac{-(m+2)}{m^2-4}=\frac{1}{2-m}\)
Để \(y>0\Leftrightarrow \frac{1}{2-m}>0\Leftrightarrow 2-m>0\Leftrightarrow m< 2\)
Vậy $m< 2$ và $m\neq -2$
Hệ có nghiệm duy nhất \(\Leftrightarrow m\ne\pm2\)
+) Nếu \(m=0\) thì \(\left(x;y\right)=\left(4;\frac{5}{2}\right)\) T/m \(x,y>0\)
+) Nếu \(m\ne0;m\ne\pm2\) thì
\(\left\{{}\begin{matrix}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\frac{8-m}{m+2}>0\\m>-2\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}8-m>0\\m>-2\end{matrix}\right.\)
\(\Leftrightarrow8>m>-2\)
Câu 3:
\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)
Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)
Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)
\(2x+y+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow26m-35=3m^2-12\)
\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)
Câu 4:
\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)
- Với \(m=-2\) hệ vô nghiệm
- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)
- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)
Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)
Câu 2:
Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
Ta có: \(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\m\left(1-my\right)+4y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\m-m^2\cdot y+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\\y\left(-m^2+4\right)=2-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\y=\dfrac{-\left(m-2\right)}{-\left(m^2-4\right)}=\dfrac{1}{m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{1}{m+2}\\x=1-\dfrac{m}{m+2}=\dfrac{m+2-m}{m+2}=\dfrac{2}{m+2}\end{matrix}\right.\)
x+y>-5
=>\(\dfrac{2}{m+2}+\dfrac{1}{m+2}>-5\)
=>\(\dfrac{3}{m+2}+5>0\)
=>\(\dfrac{3+5m+10}{m+2}>0\)
=>\(\dfrac{5m+13}{m+2}>0\)
TH1: \(\left\{{}\begin{matrix}5m+13>0\\m+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-\dfrac{13}{5}\\m>-2\end{matrix}\right.\)
=>\(m>-2\)
TH2: \(\left\{{}\begin{matrix}5m+13< 0\\m+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -\dfrac{13}{5}\\m< -2\end{matrix}\right.\)
=>\(m< -\dfrac{13}{5}\)
Vậy: \(\left[{}\begin{matrix}m< -\dfrac{13}{5}\\\left\{{}\begin{matrix}m>-2\\m\ne2\end{matrix}\right.\end{matrix}\right.\)