K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$

AH
Akai Haruma
Giáo viên
22 tháng 5 2022

Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$

$m(5-2y)+y=4$

$\Leftrightarrow y(1-2m)=4-5m$

Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$

Khi đó: $y=\frac{4-5m}{1-2m}$

$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$

$\Leftrightarrow m> \frac{4}{5}(2)$

Từ $(1); (2)\Rightarrow m> \frac{4}{5}$

$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$

$\Leftrightarrow \frac{5m-7}{1-2m}>0$

$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)

$\Leftrightarrow m< \frac{7}{5}$

Vậy $\frac{4}{5}< m< \frac{7}{5}$

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)

=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)

\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)

\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)

=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)

=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)

=>m(5m+4)=18m-9

=>\(5m^2-14m+9=0\)

=>(m-1)(5m-9)=0

=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)

14 tháng 5 2021

`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`

14 tháng 5 2021

`a)m=2`

$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`

7 tháng 2 2022

1, Gỉa sử m = 1 

Thay m = 1 vào hpt trên ta được 

\(\left\{{}\begin{matrix}x+y=1\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

2, Để hệ có nghiệm duy nhất \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

\(\left\{{}\begin{matrix}m^2x+my=m\\4x+my=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=m-2\\y=1-mx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=1-\dfrac{m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=\dfrac{2}{m+2}\end{matrix}\right.\)

Ta có : \(\dfrac{1}{m+2}-\dfrac{2}{m+2}=1\Rightarrow1-2=m+2\Leftrightarrow-1=m+2\Leftrightarrow m=-3\)(tmđk)

a, Với m = 1 

\(\left\{{}\begin{matrix}x+y=1_{\left(1\right)}\\4x+y=2_{\left(2\right)}\end{matrix}\right.\) 

Lấy (2) - (1) ta được

\(3x=1\Leftrightarrow x=\dfrac{1}{3};\Rightarrow y=1-x=1-\dfrac{1}{3}=\dfrac{2}{3}\) 

Vậy (x,y) = \(\left(\dfrac{1}{3};\dfrac{2}{3}\right)\) 

c, no của hệ là 

\(\left(\dfrac{-1}{m+2};\dfrac{2m+2}{m+2}\right)\\ Theo.bài:\\ x-y=1\\ \Leftrightarrow\dfrac{-1}{m+2}-\dfrac{2m+2}{m+2}=1\\ \Leftrightarrow-1-2m-2=m+2\\ \Leftrightarrow3m=-5\\ m=\dfrac{-5}{3}\)

a: Khi m=2 thì hệ sẽ là;

2x-y=4 và x-2y=3

=>x=5/3 và y=-2/3

b:  mx-y=2m và x-my=m+1

=>x=my+m+1 và m(my+m+1)-y=2m

=>m^2y+m^2+m-y-2m=0

=>y(m^2-1)=-m^2+m

Để phương trình có nghiệm duy nhất thì m^2-1<>0

=>m<>1; m<>-1

=>y=(-m^2+m)/(m^2-1)=(-m)/m+1

x=my+m+1

\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)

x^2-y^2=5/2

=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)

=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)

=>2(3m^2+4m+1)=5(m^2+2m+1)

=>6m^2+8m+2-5m^2-10m-5=0

=>m^2-2m-3=0

=>(m-3)(m+1)=0

=>m=3 

NV
17 tháng 4 2021

Kết hợp điều kiện đề bài và pt thứ 2 của hệ ta được:

\(\left\{{}\begin{matrix}x-y=-6\\2x+y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=7\end{matrix}\right.\)

Thế vào pt đầu:

\(m.1+2.7=18\Rightarrow m=4\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.