K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

Chữ ̣số tận cùng của 192012 là 1.

,,,,,1+199 bằng 200 có chữ số tận cùng ;à 0. Suy ra tổng trên chia hết cho 5

15 tháng 4 2016

số \(19^{2012}\)có chữ số tận cùng là 1.

...1+9 bằng10 <9 là chữ số tận cùng của số 199. và số 10 chỉ lầy cstc bằng 0>

Vì số nào có cstc bằng 0;5 chia hết cho 5. Suy ra B chia hết cho 5 vì B có cstc bằng 0

\(P=\frac{19^{2012}+199}{5}\)CHÚ Ý;    NHỮNG SỐ CÓ CHỮ SỐ TẬN CÙNG LÀ 9 KHI MŨ CHẴN THÌ SẼ CÓ TC LÀ 1 ÁP DỤNG VÀO BÀI TA CÓ

\(p=\frac{\left(...1\right)+199}{5}=\frac{\left(...0\right)}{5}\)VÌ TỬ CÓ CSTC LÀ 0 \(\Rightarrow\)TỬ \(⋮\)5

MỘT P/S CÓ TỬ CHIA HẾT CHO MẪU LÀ 1 SỐ NGUYÊN

VẬY......

4 tháng 4 2019

Ta có: \(\overline{...9}\)^4n=\(\overline{......1}\)

\(\Rightarrow19^{2012}=\overline{...1}\Rightarrow19^{2012}+199=\overline{....0.}\)

Mà \(\overline{.....0}⋮5\Rightarrow\)tử chia hết cho mẫu

\(\Rightarrow P\)là số nguyên (đpcm)

5 tháng 3 2020

Ta có \(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(\Leftrightarrow M=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\)Khi đó

\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

Vì x nguyên nên \(x^2+5x+5\)nguyên \(\Rightarrow\left(x^2+5x+5\right)^2\)là bình phương của 1 số nguyên (đccm)

Hok tốt!!

5 tháng 3 2020

a,M=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

M=(a-1)(a+1)+1

=a2-1+1=a

thay a =x2+5x+5 ta có A=(x2+5x+5)

  vậy M là bình phương của 1 số nguyên với mọi x nguyên

vì x nguyên nên x2+5x+5 nguyên 

DD
27 tháng 5 2021

a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)

Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản. 

25 tháng 6 2017

bó tay lớp 6 mà thế thì chịu

23 tháng 10 2023

Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))

Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0

     =>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0

     => (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0

     => (x-1)2 + (y-1) + [(-x+ xy) + (-y+1)] = 0

    => (x-1)2 + (y-1)+ [ x(y-1) - (y-1)] = 0

    => (x-1)2 + (y-1)2 + (x-1)(y-1) = 0

    => (x-1)2 +  2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0

    => [x-1+1/2(y-1) ]2 + 3/4.(y-1)2  = 0

   Vì: [x-1+1/2(y-1) ] >= 0 với mọi x;y thuộc R

         3/4.(y-1)2 >= 0 với mọi y thuộc R

     => (x-1+1/2y -1/2 = 0) và ( y-1 = 0)

     => (x = 1/2 -1/2y+1) và (y=1)

      => x = y =1

Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.

 

     

 

23 tháng 10 2023

đúng đó

 

 

12 tháng 7 2017

\(M=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

Đặt  \(t=a^2+5a+5\)

\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(a^2+5a+5\right)^2\)