Chứng minh rằng 222...224 không là số chính phương trong đó có 50 chữ số 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta viết \(111...11=\frac{10^n-1}{9}\)( có n chữ số 1)
do có công thức\(\left(a-b\right)^2=a^2-2ab+b^2
\)
suy ra \(A-B=\frac{10^{50}-1}{9}-2.\frac{10^{25}-1}{9}=\frac{10^{50}-2.10^{25}+1}{9}=\left(\frac{10^{25}-1}{3}\right)^2 \)
vì 10 chia 3 dư 1 suy ra 10^25 -1 chia hết cho 3 suy ra \(\frac{10^{25}-1}{3}\)là số tự nhiên suy ra A-B là số chính phương
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Đấy là toán nâng cao chuyên đề số chính phương, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
A = \(\overline{2222...24}\) (50 chữ số 2)
A = \(\overline{222...22}\) + 2 ( Số \(\overline{22..22}\) gồm 51 chữ số 2)
Xét số: B = \(\overline{222..2}\) gồm 51 chữ số 2
Tổng các chữ số của B là:
2 x 51 = 102
102 ⋮ 3
⇒ B ⋮ 3 ⇒ A = B + 2 : 3 dư 2
Vì A : 3 dư 2 nên A không phải là số chính phương do số chính phương chia 3 chỉ có thể dư 1 hoặc không dư.