Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3(x+3)-2(x-5)=11
=> 3x+9-2x+10=11
=> 3x-2x=11-10-9
=> x=-8
Vậy.........
b, 14-4|x|=-6
=> -4|x|=8
=> |x|=-2(VL vì trị tuyệt đối luôn lớn hơn hoặc = 0)
Vậy......
\(x\left(3x-5\right)-9x+15=0\)
\(\Leftrightarrow x\left(3x-5\right)-3\left(3x-5\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\3x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{5}{3}\end{cases}}\)
\(3x\left(x-5\right)-2\left(5-x\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=5\end{cases}}\)
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
\(\left(x-3\right)^{x+5}-\left(x-3\right)^{x-15}=0\)
\(\Leftrightarrow\left(x-3\right)^{x-15}\left[\left(x-3\right)^{20}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^{x-15}=0\\\left(x-3\right)^{20}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-3=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)\(\Rightarrow x=4\)