K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2024

Cho mik hỏi cách làm bài này

Tính nhanh 1 1/2x1 1/3 × 11/4×...x 1 1/99×1 1/100

5 tháng 2 2022

Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)

\(=6,3.1,2-21.3,6\)

\(=0,9.7.4.3-7.3.0,9.4\)

\(=6,3.1,2-6,3.1,2\)

\(=0\)

\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)

3 tháng 1 2017

A=-1+(-1)+...+(-1) {có 50 số hạng}

=-1.50=-50

3 tháng 1 2017

A=1-2+3-4+...+99-100       SSH=(100-1):1+1=100 Sh

=>A=(1-2)+(3-4)+....+(99-100)

vì chia thành cặp suy ra 100:2 =50 cặp

A=(-1)+(-1)+...(-1)

A=(-1).50

A=-50

8 tháng 9 2018

\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{98}{100}=\frac{49}{50}\)

15 tháng 8 2015

hừm, tính nhanh, bạn nhóm lại là được

15 tháng 8 2015

            ( 101+100+.......+3+2+1 )                  /        ( 101-100+100_99+........+  4 - 3 + 2 - 1 )

=  [ ( 101+1 )+( 100+2 )+....+( 52+50 )+ 51 ]  /    [ ( 101-100 )+(100-99)+........+( 4 - 3 )+( 2 - 1 )

=    102+102+.........+102+51                       /           1+1+..............+1+1

=      { [ 51( cặp) * 102 ] +51 }                       /             [ 51(cặp) * 1 ]

=          5252 + 51                                       /                     51

=                  5253                                     /                         51

=                                        103

14 tháng 9 2016

2x(1/1x2+1/2x3+...+1/99x100)

=2x(1-1/100)

=2x99/100

198/100

10 tháng 8 2023

\(A=-1^2+2^2-3^2+4^2-...-99^2+100^2\)

\(A=\left(2-1\right).\left(1+2\right)+\left(4-3\right).\left(3+4\right)+...\left(+100-99\right).\left(99+100\right)\)

\(A=1.\left(1+2+3+...+99+100\right)\)

\(A=\dfrac{100.\left(100+1\right)}{2}=50.101=5050\)

9 tháng 8 2023

Bạn xem lại đề