K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{98}{100}=\frac{49}{50}\)

13 tháng 5 2016

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{2}{100}-1=-\frac{49}{50}\)

13 tháng 5 2016

bạn k trước mk mới kb

=1/125

26 tháng 3 2017

(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)

=101+100+99+98+...+3+2+1

=101 . (101 + 2) : 2

=5151

101-100+99-98+...+3-2+1

=(101-100)+(99-98)+...+(3-2)+1

=1 + 1 + 1 + ... + 1

=101- 2 + 1
=100 : 2

=50 + 1

=51

(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101

13 tháng 10 2018

bang 101

4 tháng 7 2015

bạn biết cách giải rồi mà

4 tháng 7 2015

giải

     B=1+2+3+......+98+99
+

    B=99+98+.....+2+1


2B=100+100+...+100+100 = 100.99 = B = 50.99=4950

T

19 tháng 9 2018

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+\frac{1}{98\cdot97}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(\Rightarrow C=\frac{1}{100}-1+\frac{1}{100}\)

\(\Rightarrow C=\left(\frac{1}{100}+\frac{1}{100}\right)-1\)

\(\Rightarrow C=\frac{1}{50}-1\)

\(\Rightarrow C=\frac{-49}{50}\)

28 tháng 8 2018

C =\(\frac{1}{100}-\frac{1}{100.99}-...\)\(-\frac{1}{3.2}-\frac{1}{2.1}\)

C = \(\frac{1}{100}-\frac{1}{100}+\frac{1}{99}-\frac{1}{99}+...\)\(+\frac{1}{3}-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

C = 1

30 tháng 12 2015

Bài tập Toán 

24 tháng 12 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

24 tháng 12 2018

Cảm ơn bạn nhiều nha!

9 tháng 8 2016

C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

  =\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\frac{99}{100}\)

  =\(\frac{-98}{100}=\frac{-49}{50}\)

10 tháng 8 2016

C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1 
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1) 
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A 
Dễ thấy 1/2.1 = 1/1 - 1/2 
1/3.2 = 1/2 - 1/3 
..................... 
1/99.98 = 1/98 - 1/99 
1/100.99 = 1/99 - 1/100 
=> cộng từng vế với vế ta