Cho tam giác ABC. Gọi M là trung điểm của BC. Kẻ BD\(\perp\)AM(D ϵ AM) , kẻ CE\(\perp\) AM(E ϵ AM. Điều nào sau đây không thể xảy ra?
A. BD // CE. B. MD = ME.
C. AB = EC. D. BE = DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: M là trung điểm của BC
a: ΔABC cân tại A có AM là trung tuyến
nên AM là phân giác của góc BAC
b: Xét ΔABC có
AM,BD,CE là các đường phân giác
=>AM,BD,CE đồng quy tại H
a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.
Xét tam giác DMB và tam giác GMC có:
DM = GM
BM = CM
\(\widehat{DMB}=\widehat{GMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)
\(\Rightarrow BD=CG\)
b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)
Xét tam giác FBM và tam giác ECM có:
\(\widehat{FMB}=\widehat{EMC}=90^o\)
BM = CM
\(\widehat{FBM}=\widehat{ECM}\)
\(\Rightarrow\Delta FBM=\Delta ECM\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BF=CE\left(đpcm\right)\)
a) Xét △ABM và △ACM, có:
+ AB = AC
+ Góc BAM = góc CAM (AM là đường phân giác của △ABC)
+ AM cạnh chung
Vậy △ABM = △ACM (c-g-c)
b) Vì △ABM = △ACM
=> Góc AMB = góc AMC
Ta có: góc AMB + AMC = 1800
=> 1800 = 2AMB
AMB = \(\dfrac{180^0}{2}\) = 900
Vì AMB = AMC = 900
Suy ra: AM ⊥ BC
Vậy AM ⊥ BC
Câu c không biết làm nha bạn.
C