Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ điểm A là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}-x+1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Tọa độ điểm B là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-1\\-x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Tọa độ điểm C là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=-1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
ừm, thật ra bài này chỉ là ôn tập trong phần ôn tập , của ôn tập của mk. cảm ơn
\(\overrightarrow{AM}.\overrightarrow{AB}=AM^2=\overrightarrow{AM}^2\)
\(\Leftrightarrow\overrightarrow{AM}\left(\overrightarrow{AB}-\overrightarrow{AM}\right)=0\)
\(\Rightarrow\overrightarrow{AM}.\overrightarrow{MB}=0\)
\(\Rightarrow AM\perp BM\)
\(\Rightarrow\) Quỹ tích là đường tròn đường kính AB
Sửa đề: AD=AC
a: Xét ΔACE và ΔADE có
AC=AD
\(\widehat{CAE}=\widehat{DAE}\)
AE chung
DO đó: ΔACE=ΔADE
Suy ra: \(\widehat{CAE}=\widehat{DAE}\)
hay AE là phân giác của góc CAB
b: Ta có: AC=AD
EC=ED
DO đó: AE là đường trung trực của CD
c: ta có: AE là đường trung trực của CD
nên AE\(\perp\)CD tại I
=>ΔAID vuông tại I
=>\(\widehat{ADI}< 90^0\)
=>\(\widehat{CDB}>90^0\)(Do góc ADI và góc CDB là hai góc kề bù)
Xét ΔCDB có \(\widehat{CDB}>90^0\)
nên BC là cạnh lớn nhất
=>BC>CD