K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

\(A=1+2+2^2+2^3+...+2^{119}\)

\(\Rightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\)

\(\Rightarrow A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{118}\left(1+2\right)\)

\(\Rightarrow A=\left(1+2\right)\left(1+2^2+...+2^{118}\right)\)

\(\Rightarrow A=3\left(1+2^2+...+2^{118}\right)⋮3\)

\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{118}\left(1+2\right)\)

\(=3\left(1+...+2^{118}\right)⋮3\)

\(A=\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\)

\(=7\left(1+...+2^{117}\right)⋮7\)

\(A=\left(1+2+2^2+2^3+2^4\right)+...+2^{115}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(1+...+2^{115}\right)⋮31\)

12 tháng 12 2021

A ko chia hết cho 17

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{118}\right)=3\left(1+2^2+...+2^{118}\right)⋮3\\ A=\left(1+2+2^2\right)+...+\left(2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(1+...+2^{117}\right)=7\left(1+...+2^{117}\right)⋮7\)

\(A=\left(1+2+2^2+2^3+2^4\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2+2^3+2^4\right)+...+2^{115}\left(1+2+2^2+2^3+2^4\right)\\ A=\left(1+2+2^2+2^3+2^4\right)\left(1+...+2^{115}\right)\\ A=31\left(1+...+2^{115}\right)⋮31\)

12 tháng 12 2021

Mình trả lời câu này rồi mà!

18 tháng 12 2021

Cho xin đáp án lẹ đi

22 tháng 12 2021
Lớp 6 lm j đã học cái này :/
DD
16 tháng 12 2021

\(A=1+2+2^2+2^3+...+2^{119}\)

\(2A=2+2^2+2^3+...+2^{120}\)

\(2A-A=\left(2+2^2+2^3+...+2^{120}\right)-\left(1+2+2^2+2^3+...+2^{119}\right)\)

\(A=2^{120}-1\)

Có \(120\)chia hết cho các số \(2,3,8,5\)nên \(A\)chia hết cho \(2^2-1=3,2^3-1=7,2^8-1=255=17.15,2^5-1=31\).

Suy ra đpcm. 

DD
16 tháng 12 2021

\(A=1+2^1+2^2+...+2^{100}+2^{101}\)

\(=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)

\(=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)

\(=7\left(1+2^3+...+2^{99}\right)\)chia hết cho \(7\).

1) Ta có: \(2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

2) Ta có: \(n+2⋮n-3\)

\(\Leftrightarrow n-3+5⋮n-3\)

mà \(n-3⋮n-3\)

nên \(5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

Vậy: \(n\in\left\{4;2;8;-2\right\}\)

4 tháng 2 2021

cảm ơnhaha

19 tháng 2 2016

1.Gộp 3 số vào thành 1 tổng rồi tính:

(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)

=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)

=1*15+2^3*15+...+2^37*15

=15*(1+2^3+...+2^39) chia hết cho 15

29 tháng 10 2019

Mí bn giúp mk nhanh nha, mai mk hc òi

Thank you mí bé

29 tháng 10 2019

mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)Nếu a = 7k (k thuộc Z) thì a chia hết cho 7Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7Trong trường hợp...
Đọc tiếp

Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:

a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)

Nếu a = 7k (k thuộc Z) thì a chia hết cho 7

Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7

Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7

Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7

Trong trường hợp nào củng có một thừa số chia hết cho 7

Vậy: a^7 - a chia hết cho 7

Mình không hiểu vài chỗ:

- Nếu a = 7k nghĩa là sao?

- Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7. Cái khúc "thì a^2 - 1 = 49k^2 + 14k chia hết cho 7" là gì?

- Tương tự, Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7. Cái khúc "thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7"  là sao?

- a^7 - a sao lại phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) được?

- Phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) để làm gì?

Nhờ các bạn giải thích hộ mình. Mình cảm ơn trước.

0