Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A ko chia hết cho 17
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{118}\right)=3\left(1+2^2+...+2^{118}\right)⋮3\\ A=\left(1+2+2^2\right)+...+\left(2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(1+...+2^{117}\right)=7\left(1+...+2^{117}\right)⋮7\)
\(A=\left(1+2+2^2+2^3+2^4\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2+2^3+2^4\right)+...+2^{115}\left(1+2+2^2+2^3+2^4\right)\\ A=\left(1+2+2^2+2^3+2^4\right)\left(1+...+2^{115}\right)\\ A=31\left(1+...+2^{115}\right)⋮31\)
\(A=1+2+2^2+2^3+...+2^{119}\)
\(2A=2+2^2+2^3+...+2^{120}\)
\(2A-A=\left(2+2^2+2^3+...+2^{120}\right)-\left(1+2+2^2+2^3+...+2^{119}\right)\)
\(A=2^{120}-1\)
Có \(120\)chia hết cho các số \(2,3,8,5\)nên \(A\)chia hết cho \(2^2-1=3,2^3-1=7,2^8-1=255=17.15,2^5-1=31\).
Suy ra đpcm.
\(A=1+2^1+2^2+...+2^{100}+2^{101}\)
\(=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)
\(=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)
\(=7\left(1+2^3+...+2^{99}\right)\)chia hết cho \(7\).
mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
Để mình giúp bạn!!
\(n^2+n+1⋮n+1\\ \Rightarrow n\left(n+1\right)+1⋮n+1\\ \Rightarrow n+1\in U\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow n\in\left\{0;-2\right\}\)
\(n^2+5⋮n+1\\ \Rightarrow n^2-1+6⋮n+1\\ \Rightarrow\left(n-1\right)\left(n+1\right)+6⋮n+1\\ \Rightarrow6⋮n+1\\ \Rightarrow n+1\in\text{Ư}\left(6\right)=\left\{1;6;-1;-6\right\}\\ \Rightarrow n=\left\{0;5;-2;-7\right\}\)
\(n+2⋮n^2-3\\ \Rightarrow n^2-3-1⋮n^2-3\\ \Rightarrow1⋮n^2-3\\ \)
bạn giải đc câu nào chưa
Nếu bạn giải đc rồi thì giải hộ mik đc k ? Nha bạn
\(A=1+2+2^2+2^3+...+2^{119}\)
\(\Rightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\)
\(\Rightarrow A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{118}\left(1+2\right)\)
\(\Rightarrow A=\left(1+2\right)\left(1+2^2+...+2^{118}\right)\)
\(\Rightarrow A=3\left(1+2^2+...+2^{118}\right)⋮3\)
\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{118}\left(1+2\right)\)
\(=3\left(1+...+2^{118}\right)⋮3\)
\(A=\left(1+2+2^2\right)+...+2^{117}\left(1+2+2^2\right)\)
\(=7\left(1+...+2^{117}\right)⋮7\)
\(A=\left(1+2+2^2+2^3+2^4\right)+...+2^{115}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(1+...+2^{115}\right)⋮31\)