C ho tứ giác MNPQ có góc MNQ= góc MPQ. Gọi I là giao điểm của MP và NQ; K là giao điểm của MQ và NP. Chứng minh rằng:
a) tam giác MIN đồng dạng với tam giác QIP
b) tam giác MIQ đồng dạng với tam giác NIP
c) KM . KQ = KN . KP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có
MQ=PN
\(\widehat{MQH}=\widehat{PNK}\)
Do đó: ΔMHQ=ΔPKN
Suy ra: MH=PK
a) Xét tam giác QMN có :
A là trung điểm của MN
B là trung điểm của MQ
=) AB là đường trung bình của tam giác QMN
=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)
Xét tam giác QPN có :
C là trung điểm của QP
D là trung điểm của NP
=) CD là đường trung bình của tam giác QPN
=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)
Từ (*) và (**) =) Tứ giác ABCD là hình bình hành (1)
Xét tam giác MQP có :
B là trung điểm của MQ
C là trung điểm của QP
=) BC là đường trung bình của tam giác MQP
=) BC // MP
Do MNPQ là hình thoi =) MP\(\perp\)NQ
Mà BC // MP và AB // NQ
=) BC\(\perp\)AB (2)
Từ (1) và (2) =) ABCD là hình chữ nhật
b) Ta có : MQ=QP
Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)
Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)
=) QB=QC
Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)
=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)
Xét tam giác QMN có:
MQ=MQ và \(\widehat{QMN}\)=600
=) QMN là tam giác đều
Xét tam giác MQN có :
NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)
=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300
Xét tam giác QBN và tam giác QCN có :
QB=QC ( chứng minh trên )
\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )
QN là cạch chung
=) tam giác QBN = tam giác QCN (c-g-c)
=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )
=) Tam giác BNC là tam giác cân tại N (3)
Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)
=) 300 +300 =\(\widehat{BNC}\)
=) \(\widehat{BNC}\)=600 (4)
Từ (3) và (4) =) Tam giác BNC là tam giác đều
a: Xét ΔMNQ có
A là trung điểm của MN
B là trung điểm của MQ
Do đó: AB là đường trung bình của ΔMNQ
Suy ra: AB//NQ và AB=NQ/2(1)
Xét ΔNPQ có
C là trung điểm của QP
D là trung điểm của NP
Do đó: CD là đường trung bình của ΔNPQ
Suy ra: CD//NQ và CD=NQ/2(2)
Từ (1) và (2) suy ra ABCD là hình bình hành
công thức tính diện tích của tứ giác có 2 đường chéo vuông góc nhau là: tích 2 đường chéo chia 2
Áp dụng: kết quả là 48cm2