x2-(1+căn3 )x+căn3 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
a)
ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{2x}{x-3}=\dfrac{x^2+11x-6}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+11x-6}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(2x^2+6x=x^2+11x-6\)
\(\Leftrightarrow2x^2+6x-x^2-11x+6=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Vậy: S={2}
b) Ta có: \(3x^2+\left(1-\sqrt{3}\right)x+\sqrt{3}-4=0\)
\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-4=0\)
\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-1-3=0\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3-\sqrt{3}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+4-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+4-\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=\sqrt{3}-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{\sqrt{3}-4}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;\dfrac{\sqrt{3}-4}{3}\right\}\)
\(x^2-\left(\sqrt{3}+\sqrt{5}\right).x+\sqrt{3}.\sqrt{5}=0\)
\(\Leftrightarrow x^2-\sqrt{3}.x-\sqrt{5}.x+\sqrt{3}.\sqrt{5}=0\)
\(\Leftrightarrow x^2-\sqrt{3}.x-\sqrt{5}.x+\sqrt{3}.\sqrt{5}=0\)
\(\Leftrightarrow x\left(x-\sqrt{3}\right)-\sqrt{5}\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\int^{x-\sqrt{5}=0}_{x-\sqrt{3}=0}\Leftrightarrow\int^{x=\sqrt{5}}_{x=\sqrt{3}}\)
Vậy x \(\in\left\{\sqrt{3};\sqrt{5}\right\}\)
\(\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}-\sqrt{3}\)
\(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}-\sqrt{3}\)
\(=2\sqrt{3}-\sqrt{3}\)
\(=\sqrt{3}\)
\(<=>x^2-\sqrt{3}x-\sqrt{5}x+\sqrt{15}=0<=>x\left(x-\sqrt{3}\right)-\sqrt{5}\left(x-\sqrt{3}\right)=0<=>\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)=0\)
<=>Tự làm
\(\sqrt{3}cot^2x+\left(1-\sqrt{3}\right)cotx-1=0\)
Đk: \(sinx\ne0\Rightarrow x\ne m\pi\)
Pt: \(\Rightarrow\left[{}\begin{matrix}cotx=1\\cotx=-\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)(tmđk \(x\ne m\pi\))
\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
Ta có: \(2-\sqrt{3}=\frac{1}{2+\sqrt{3}}\)
\(7-4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
<=> \(\frac{1}{\left(2+\sqrt{3}\right)^x}+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
<=> \(1+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)
<=> \(1+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^{2x}=4\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)
Đặt: \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=t\)
Ta có pt ẩn t: \(1+t^2=4t\)
<=> \(t^2-4t+1=0\Leftrightarrow\orbr{\begin{cases}t=2-\sqrt{3}\\t=2+\sqrt{3}\end{cases}}\)
+) Với \(t=2+\sqrt{3}\), ta có:
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=2+\sqrt{3}\)
<=> \(\left(2+\sqrt{3}\right)^x=\frac{2+\sqrt{3}}{2-\sqrt{3}}=\left(2+\sqrt{3}\right)^2\)
<=> x=2
Trường hợp còn lại em làm tương tự
ý bạn là:
\(^{x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0}\)
\(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)
\(\Delta=\left(1+\sqrt{3}\right)^2-4\sqrt{3}=1+2\sqrt{3}+3-4\sqrt{3}\)
\(=4-2\sqrt{3}=\left(\sqrt{3}\right)^2-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\ge0\)
\(x_1=\frac{1+\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=\frac{1+\sqrt{3}-\left|\sqrt{3}-1\right|}{2}\)
\(=\frac{1+\sqrt{3}-\sqrt{3}+1}{2}=\frac{2}{2}=1\)( vì \(\sqrt{3}-1>0\))
\(x_2=\frac{1+\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=\frac{1+\sqrt{3}+\sqrt{3}-1}{2}=\frac{2\sqrt{3}}{2}=\sqrt{3}\)
Vậy tập nghiệm phương trình là S = { \(1;\sqrt{3}\)}