K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

1)

\(5x^2-\sqrt{3}x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{23}-\sqrt{3}}{10}\\x=\frac{\sqrt{23}+\sqrt{3}}{10}\end{cases}}\)

a)

ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

Ta có: \(\dfrac{2x}{x-3}=\dfrac{x^2+11x-6}{x^2-9}\)

\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+11x-6}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(2x^2+6x=x^2+11x-6\)

\(\Leftrightarrow2x^2+6x-x^2-11x+6=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

Vậy: S={2}

b) Ta có: \(3x^2+\left(1-\sqrt{3}\right)x+\sqrt{3}-4=0\)

\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-4=0\)

\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-1-3=0\)

\(\Leftrightarrow\left(3x^2-3\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3-\sqrt{3}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+4-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+4-\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=\sqrt{3}-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{\sqrt{3}-4}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{1;\dfrac{\sqrt{3}-4}{3}\right\}\)

1 tháng 2 2021

cảm ơn bạn

 

31 tháng 8 2020

1. \(x^3-6x^2+10x-4=0\)

<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

<=>  \(\left(x-2\right)\left(x^2-4x+2\right)=0\)

<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)

Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)

=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

31 tháng 8 2020

1) Ta có: \(x^3-6x^2+10x-4=0\)

       \(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

       \(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)

       \(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)

   + \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)

   + \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)

                                             \(\Leftrightarrow\)\(\left(x-2\right)^2=2\)

                                             \(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)

                                             \(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,5858;2;3,4142\right\}\)

12 tháng 1 2017

làm tạm câu này vậy

a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)

\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)

\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)

\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)

\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)

\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)

Vậy...

12 tháng 1 2017

chuẩn

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)

b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)

21 tháng 4 2020

a) \(x^3_1+x_2^3=\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)=\left(x_1+x_2\right)\left(x^2_1+2x_1x_2-3x_1x_2+x^2_2\right).\)(1)

Áp dụng Đen-ta: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

\(\left(x_1+x_2\right)^2=25.\)

<=> \(x^2_1+x_2^2+2x_1x_2=25.\)

(1) 5.(25-3)=5.22=110

Câu 2:

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

ta có:\(x^2_1+x^2_2+2x_1x_2=25.\Rightarrow x^2_1+x^2_2=23\Rightarrow\left(x^2_1+x^2_2\right)^2=529.\)

\(\Leftrightarrow x^4_1+x^4_2+2x^2_1x^2_2=529.\)

\(\Rightarrow x^4_1+x^4_2=527\)

học tốt

4 tháng 10 2020

a) Ta có: \(\left|x-1\right|+\left|x^2+3\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2+3\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2+3\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2+3\right|=0\)

\(\Rightarrow x^2=-3\) => vô lý

Vậy PT vô nghiệm

4 tháng 10 2020

b) Ta có: \(\left|x-1\right|+\left|x^2-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2-1\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2-1\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2-1\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\x^2=1\end{cases}}\Rightarrow x=1\)

Vậy x = 1