Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(z=x+yi\Rightarrow |z|=\sqrt{x^2+y^2}=1(1)\)
\(y=\sqrt{3}x; y>0\Rightarrow \left\{\begin{matrix} x>0\\ y^2=3x^2(2)\end{matrix}\right.\)
Từ \((1); (2)\Rightarrow \sqrt{x^2+3x^2}=1\Leftrightarrow 2x=1\Leftrightarrow x=\frac{1}{2}\)
\(\Rightarrow y=\frac{\sqrt{3}}{2}\)
Số phức \(z=\frac{1}{2}+\frac{\sqrt{3}i}{2}\)
\(\Rightarrow z-\frac{1}{z}+1=1+\sqrt{3}i\)
\(\Rightarrow |z-\frac{1}{z}+1|=\sqrt{1^2+3}=2\) (đây chính là mo đun của số phức đã cho )
Lời giải:
ĐK: \(-2< x< 10\)
\(\log_3(10-x)+\frac{1}{2}\log_{\sqrt{3}}(x+2)=2\)
\(\Leftrightarrow \log_3(10-x)+\log_3(x+2)=2\)
\(\Leftrightarrow \log_3[(10-x)(x+2)]=2\)
\(\Leftrightarrow (10-x)(x+2)=9\)
\(\Leftrightarrow -x^2+8x+11=0\)
\(\Leftrightarrow x=4\pm 3\sqrt{3}\) (đều thỏa mãn đkxđ)
Vậy pt có nghiệm \(x=4\pm 3\sqrt{3}\)
1/Áp dụng công thức tổng cấp số nhân:
\(z=1+\left(1+i\right)+\left(1+i\right)^2+...+\left(1+i\right)^{20}=1+\frac{\left(1+i\right)^{21}-1}{i+1-1}=1+\frac{\left(1+i\right)^{21}-1}{i}\)
Ta có:
\(\left(1+i\right)^{21}=\left(1+i\right)\left[\left(1+i\right)^2\right]^{10}=\left(1+i\right)\left(1+2i+i^2\right)^{10}\)
\(=\left(1+i\right)\left(2i\right)^{10}=\left(1+i\right).2^{10}.i^{10}=\left(1+i\right)2^{10}\left(i^2\right)^5=-\left(1+i\right).2^{10}\)
\(\Rightarrow z=1+\frac{-\left(1+i\right)2^{10}-1}{i}=1+\frac{-i\left(1+i\right)2^{10}-i}{i^2}=1+\left(i+i^2\right)2^{10}+i=1+i+\left(i-1\right).2^{10}\)
\(\Rightarrow z=\left(1-2^{10}\right)+\left(1+2^{10}\right)i\)
2/
\(z=\left(3+i\sqrt{3}\right)^3\Rightarrow\frac{1}{z}=\frac{1}{\left(3+i\sqrt{3}\right)^3}=\frac{\left(3-i\sqrt{3}\right)^3}{\left(3+i\sqrt{3}\right)^3\left(3-i\sqrt{3}\right)^3}=\frac{\left(3-i\sqrt{3}\right)^3}{\left(9-3i^2\right)^3}\)
\(\Rightarrow\frac{1}{z}=\frac{\left(3-i\sqrt{3}\right)^3}{12^3}=\left(\frac{1}{4}-\frac{\sqrt{3}}{12}i\right)^3\)
3/ Bạn viết lại đề được không?
Lời giải:
Đặt \(z=a+bi(a,b\in\mathbb{R})\)
Từ \(z\overline{z}=1\Rightarrow a^2+b^2=1\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(O(0;0)\) bán kính \(R=1\)
Lại có:
\(|z+\sqrt{3}+i|=m(m\geq 0)\)
\(\Leftrightarrow |(a+\sqrt{3})+i(b+1)|=m\)
\(\Leftrightarrow (a+\sqrt{3})^2+(b+1)^2=m^2\)
Do đó tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \(I(-\sqrt{3}; -1)\) bán kính \(R'=m\)
Để số phức $z$ tồn tại duy nhất thì \((O); (I) \) phải tiếp xúc trong hoặc tiếp xúc ngoài.
Nếu \((O); (I)\) tiếp xúc ngoài:
\(\Rightarrow OI=R+R'\Leftrightarrow 2=1+m\Leftrightarrow m=1\)
Nếu \((O),(I)\) tiếp xúc trong.
TH1: \((O)\) nằm trong $(I)$
\(OI+R=R'\Leftrightarrow 2+1=m\Leftrightarrow m=3\)
TH2: \((I)\) nằm trong $(O)$
\(OI+R'=R\Leftrightarrow 2+m=1\Leftrightarrow m=-1\) (loại vì \(m\geq 0\) )
Do đó \(S=\left\{1;3\right\}\) hay số phần tử của S là 2.
Lời giải:
Gọi vector pháp tuyến của \((P)\) là \((a,b,c)\)
Ta có \((-1,-2,3)=\overrightarrow {AB}\perp \overrightarrow{n_P}\Rightarrow -a-2b+3c=0\) $(1)$
Do mặt phẳng đi qua \(A\) nên nó có dạng:\(a(x-1)+by+cz=0\)
Khoảng cách từ \(C\mapsto (P)\) là : \(d=\frac{|b+c|}{\sqrt{a^2+b^2+c^2}}=\frac{2}{\sqrt{3}}\)
\(\Rightarrow 6bc=4a^2+b^2+c^2\) $(2)$
Từ \((1),(2)\Rightarrow 6bc=4(2b-3c)^2+b^2+c^2\Leftrightarrow 17b^2+37c^2-54bc=0\)
\(\Leftrightarrow (37c-17b)(c-b)=0\)
TH1: \(b=c\Rightarrow a=3c-2b=b\)
PTMP: \(b(x-1)+by+bz=0\Leftrightarrow x+y+z-1=0\)
TH2: \(c=\frac{17b}{37}\Rightarrow a=3c-2b=\frac{-23}{37}b\)
PTMP: \(-\frac{23}{37}b(x-1)+by+\frac{17}{37}bz=0\Leftrightarrow \frac{-23}{37}x+y+\frac{17}{37}z+\frac{23}{37}=0\)
Lời giải:
Gọi thiết diện qua trục là tam giác đều \(ABC\) có cạnh là $a$ , tâm đường tròn là \(H\)
Ta có \(BH=\frac{a}{2},AH=\frac{\sqrt{3}a}{2}\)
Theo hệ thức trong tam giác vuông \(\frac{1}{d(H,AB)^2}=\frac{1}{BH^2}+\frac{1}{AH^2}=\frac{1}{9}\)
\(\Leftrightarrow \frac{16}{3a^2}=\frac{1}{9}\Rightarrow a=4\sqrt{3}\)
Suy ra diện tích toàn phần của hình nón:
\(S_{tp}=\pi Rl+\pi R^2=36\pi\)