Cho hcn ABCD có AB=20 cm, BC=15 cm. Kẻ CH vuông góc với BD.
a) Chứng minh AD^2=BHxBD
b) Tính diện tích tam giác BHC.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
8 tháng 4 2021
Xét tam giác AHB và tam giác DAB có:
góc B chung
góc A= góc H= 90 độ
=> tam giác AHB đồng dạng vs tam giác DAB(1)
Ta lại xét tam giác ABD và tam giác CDB có
góc A = góc C= 90 độ
BC=AD, DC=AB (vì là hình chữ nhật)
nên tam giác ABD= tam giác CDB(c.g.c)=> tam giác ABD đồng dạng vs tam giác CDB(2)
Từ 1 và 2 => tam giác AHB đồng dạng vs tam giác BCD
góc B chung
góc A= góc H= 90 độ
=> tam giác AHB đồng dạng vs tam giác DAB(1)
Ta lại xét tam giác ABD và tam giác CDB có
góc A = góc C= 90 độ
BC=AD, DC=AB (vì là hình chữ nhật)
nên tam giác ABD= tam giác CDB(c.g.c)=> tam giác ABD đồng dạng vs tam giác CDB(2)
Từ 1 và 2 => tam giác AHB đồng dạng vs tam giác BCD
1 tháng 7 2023
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
góc HCD=góc CDB
=>ΔHCD đồng dạng với ΔCDB
=>HC/CD=CD/DB
=>CD^2=HC*DB
12 tháng 5 2022
a: Xét ΔHBA vuông tại H và ΔCDB vuông tại C có
\(\widehat{HBA}=\widehat{CDB}\)
Do đó: ΔHBA\(\sim\)ΔCDB
b: \(BD=\sqrt{6^2+8^2}=10\left(cm\right)\)
c: \(HA=\dfrac{AB\cdot AD}{BD}=4.8\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=3.6\left(cm\right)\)
\(S_{HBA}=\dfrac{4.8\cdot3.6}{2}=8.64\left(cm^2\right)\)
23 tháng 5 2022
a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
a: Xét ΔBCD vuông tại C có CH là đường cao
nên \(BC^2=BH\cdot BD\)
hay \(AD^2=BH\cdot BD\)
b: \(CH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
BH=9cm
\(S_{BHC}=6\cdot9=54\left(cm^2\right)\)
Cho mik hỏi là 25 lấy từ đâu ạ?