Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔHDB vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HDB}\)(hai góc so le trong, AB//DH)
Do đó: ΔABD=ΔHDB(Cạnh huyền-góc nhọn)
b) Xét tứ giác ABHD có
\(\widehat{BAD}=90^0\)(gt)
\(\widehat{ADH}=90^0\)(gt)
\(\widehat{BHD}=90^0\)(gt)
Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật ABHD có AB=AD(gt)
nên ABHD là hình vuông(Dấu hiệu nhận biết hình vuông)
Suy ra: AB=DH=AD=BH=2(cm)
Ta có: DH+HC=DC(H nằm giữa D và C)
nên HC=DC-DH=4-2=2(cm)
Xét ΔBHC vuông tại H có BH=HC(=2cm)
nên ΔBHC vuông cân tại H(Định nghĩa tam giác vuông cân)
A B D H C 2 2 2 2 2
a)ta có \(AD\perp DC,BH\perp DC\)
\(\Rightarrow AD\)//BH
mà AB//DH
=> AB=BH=HD=DA=2 cm
Xét △ABD và △HDB có
AB=HD(chứng minh trên)
BD;chung
AD=BH(chứng minh trên)
=>△ABD = △HDB(c-c-c)
vậy △ABD = △HDB
ta có DH=2 cm
mà DC=4cm
=>HC=2 cm
ta có HC=BH(=2cm)
mà BH⊥HC
=>△BHC vuông cân tại H
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta được AB/BC = DB/CD = AB/BD
hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5
==> BC= 3,5*5/2,5 = 7 (cm)
ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5
==> CD = 5*5/2,5 =10 (cm)
c) Từ (1) ta được;
AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)^2 = 1/4
HS tự chứng minh