K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021
Xét tam giác AHB và tam giác DAB có:
 góc B chung
góc A= góc H= 90 độ
=> tam giác AHB đồng dạng vs tam giác DAB(1)
Ta lại xét tam giác  ABD và tam giác  CDB có
góc A = góc C= 90 độ
BC=AD, DC=AB (vì là hình chữ nhật)
nên tam giác ABD= tam giác CDB(c.g.c)=> tam giác ABD đồng dạng vs tam giác CDB(2)
Từ 1 và 2 => tam giác AHB đồng dạng vs tam giác BCD

a: Xét ΔBCD vuông tại C có CH là đường cao

nên \(BC^2=BH\cdot BD\)

hay \(AD^2=BH\cdot BD\)

b: \(CH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

BH=9cm

\(S_{BHC}=6\cdot9=54\left(cm^2\right)\)

3 tháng 1 2022

Cho mik hỏi là 25 lấy từ đâu ạ?

bài nãy dễ mk ms đk cô giáo chữa cho  ^~^

19 tháng 6 2018

HS tự chứng minh

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHDC vuông tại H và ΔDBE vuông tại D có

góc HDC=góc DBE

=>ΔHDC đồng dạng với ΔDBE

=>DH/DB=CH/DE

=>DH*DE=CB*CH=DC^2

c: DC^2=CH*DB

=>CH*10=8^2=64

=>CH=6,4cm

\(DH=\sqrt{8^2-6.4^2}=4.8\left(cm\right)\)

=>DE=8^2/4,8=40/3(cm)

=>CE=32/3(cm)

Xét ΔHCE vuông tại H và ΔCDE vuông tại C có

góc HEC chung

=>ΔHCE đồng dạng với ΔCDE

=>\(\dfrac{S_{HCE}}{S_{CDE}}=\left(\dfrac{CE}{DE}\right)^2=\left(\dfrac{32}{3}:\dfrac{40}{3}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: BD=căn 8^2+6^2=10cm

BE=10^2/6=100/6=50/3cm

EC=DC^2/BC=8^2/6=32/3cm

Xét ΔEBD có CH//BD

nên CH/BD=EC/EB

=>CH/10=32/50=16/25

=>CH=160/25=6,4cm