\(\frac{3x+2}{4}\)= \(\frac{y}{2}\)= \(\frac{3x-y+2}{x}\)(x \(\ne\)0)
mn giúp mik nha, cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
Điều kiện \(\hept{\begin{cases}x\ne0\\3x^2-x-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{4}{3}\end{cases}}}\)
Đặt \(\frac{3x^2-x-4}{x}=a\)thì ta có
\(PT\Leftrightarrow a+\frac{9}{a}=6\)
\(\Leftrightarrow a^2-6a+9=0\)
\(\Leftrightarrow\left(a-3\right)^2=0\)
\(\Leftrightarrow a=3\)
\(\Leftrightarrow\frac{3x^2-x-4}{x}=3\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow\left(3x^2-6x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}\)
ta co: 6x-2y=x+y(nhan cheo)
\(\Rightarrow\)5x=3y
\(\Rightarrow\)x/y=3/5
1) 1/x-1/y
=y/xy-x/xy
=y-x/xy
= - (x-y)/xy
= -1 (vì x-y=xy)
2)
(x- 1/2)*(y+1/3)*(z-2)=0
=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0
th1 :x-1/2=0 => x=1/2
x+2=y+3=z+4
mà x=1/2 => y= -1/2 ; z=-3/2
th2: y+1/3=0
th3 : z-2=0
(tự làm nha)
1) Với x,y khác 0, Ta có
\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)
Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)
2) Ta có:
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)
Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)
Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)
Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)
Vậy......
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Với những dạng bài kiểu này của lớp 7 phải tinh ý một chút !
\(\frac{3x+2}{4}=\frac{y}{2}=\frac{3x-y+2}{x}\left(x\ne0\right)\)
+)AD dãy tỉ số bằng nhau ta có:
\(\frac{3x+2}{4}=\frac{y}{2}=\frac{3x-y+2}{x}=\frac{3x+2-y-3x+y-2}{4-2-x}=\frac{0}{2-x}=0\)
Thay giá trị của 0 bằng các phân thức là xog