Cho tam giác ABC vuông tại A đường trung tuyến AD, trên tia đối của tia AD lấy điểm E sao cho AD=DE
a. Tính góc ACE
b.Chứng minh tam giác BAC= tam giác ECA
Các bạn giải nhanh giúp minh một tí mình phải đi học nữa! Cảm ơn các bạn rất nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
AD,BE là đường cao
AD cắt EB tại H
=>H là trực tâm
=>CH vuông góc AB
b: ΔABC cân tại A
mà AD là trung tuyến
nên AD vuông góc BC
Xét tứ giác AKBD có
góc AKB=góc ADB=góc KBD=90 độ
=>AKBD là hình chữ nhật
=>góc KAD=90 độ
(Có 1 số kí hiệu chính là cái mình chứng minh được, bạn bổ sung giùm mình.)
a/ Ta có tam giác ABC vuông tại A, AD là trung tuyến
=> AD = 1/2 BC (trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)
Mà: BD = CD = 1/2 BC (gt)
=> AD = BD (cùng = 1/2 BC)
Tiếp, có AD = DE = 1/2 AE (gt)
=> BD = 1/2 AE
=> góc ABE = 90 độ (Vì tam giác ABE vuông tại A, đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền chỉ có trong tam giác vuông)
b/ Ta có:
+ D là trung điểm AE
+ D là trung điểm BC
=> Tứ giác ABEC là hình bình hành
=> góc ABE = góc ECA = 90 độ và AB = EC (tính chất hình bình hành) (Ê, để ý đi, nó là hình chữ nhật luôn rồi, mà thôi dùng hình bình hành nhé. Hoặc dùng hcn cũng ok!)
Xét tam giác BAC và tam giác ECA có:
góc ABE = góc ECA = 90 độ (cmt)
AB = EC (cmt)
AC: chung
=> tam giác BAC = tam giác EAC (c.g.c)
PS: Check lại giùm nhé!
a: Xét ΔABC có
AD,BE là đường cao
AD cắt EB tại H
=>H là trực tâm
=>CH vuông góc AB
b: ΔABC cân tại A
mà AD là trung tuyến
nên AD vuông góc BC
Xét tứ giác AKBD có
góc AKB=góc ADB=góc KBD=90 độ
=>AKBD là hình chữ nhật
=>góc KAD=90 độ
a: Xet ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
d: Xét ΔAED có
AH/AD=AK/AE
nên HK//DE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
=>ΔAHB=ΔAKC
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Giải :
Có EA=EC
FB=FC
SUY RA FC/EC=FB/EA
theo Talét đảo suy ra AE//BF
2.C = 45 độ suy ra ABC là tam giác vuông cân tại A
XÉT tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD=BD=ABcăn2/2
AE=BC=ABcăn2, pitago vào tam giác vuông EDB suy ra BE^2=5AB^2 (2)
Từ (1) và (2)suy ra BE=BF
CÁi vuông góc chứng minh BEF =45 độ
Ai xem LUẬT NHÂN QUẢ , của LÂM CHẤN KHANG thì kết bạn nha
ai chơi truy kích thì kết bạn lun
may chu mien nao
nick ten gi