Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
(Có 1 số kí hiệu chính là cái mình chứng minh được, bạn bổ sung giùm mình.)
a/ Ta có tam giác ABC vuông tại A, AD là trung tuyến
=> AD = 1/2 BC (trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)
Mà: BD = CD = 1/2 BC (gt)
=> AD = BD (cùng = 1/2 BC)
Tiếp, có AD = DE = 1/2 AE (gt)
=> BD = 1/2 AE
=> góc ABE = 90 độ (Vì tam giác ABE vuông tại A, đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền chỉ có trong tam giác vuông)
b/ Ta có:
+ D là trung điểm AE
+ D là trung điểm BC
=> Tứ giác ABEC là hình bình hành
=> góc ABE = góc ECA = 90 độ và AB = EC (tính chất hình bình hành) (Ê, để ý đi, nó là hình chữ nhật luôn rồi, mà thôi dùng hình bình hành nhé. Hoặc dùng hcn cũng ok!)
Xét tam giác BAC và tam giác ECA có:
góc ABE = góc ECA = 90 độ (cmt)
AB = EC (cmt)
AC: chung
=> tam giác BAC = tam giác EAC (c.g.c)
PS: Check lại giùm nhé!
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
Đáp án:
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
Ai xem LUẬT NHÂN QUẢ , của LÂM CHẤN KHANG thì kết bạn nha
ai chơi truy kích thì kết bạn lun
may chu mien nao
nick ten gi