K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2015

\(S=\frac{2^2}{\left(2-1\right)\left(2+1\right)}+\frac{3^2}{\left(3-1\right)\left(3+1\right)}+...+\frac{2008^2}{\left(2008-1\right)\left(2008+1\right)}\)

\(S=\frac{2^2}{2^2-1}+\frac{3^2}{3^2-1}+...+\frac{2008^2}{2008^2-1}=\frac{2^2-1+1}{2^2-1}+\frac{3^2-1+1}{3^2-1}+...+\frac{2008^2-1+1}{2008^2-1}\)

\(S=1+\frac{1}{1.3}+1+\frac{1}{2.4}+...+1+\frac{1}{2007.2009}=\left(1+1+...+1\right)+\left(\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{2007.2009}\right)\)Tính \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{2007.2009}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{2007.2009}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)=\frac{1}{2}.\left(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\right)\)

\(A=\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{2008}-\frac{1}{2009}\right)=...\)

Vậy \(S=2007+A=...\)

 

5 tháng 1 2016

Bài này nếu dùng hằng đẳng thức lớp 8 thì hay hơn.Thôi cứ làm vầy nhé:

1+1/1.3=2^2/1.3  ;   1+1/2.4=3^2/2.4  ;   1+1/3.5=4^2/3.5  ;  ......;1+1/2007.2009=2008^2/2007.2009    Thấy quy luật rồi chứ!

ta được A=(2^2.3^2.4^2.....2008^2)/1.3.2.4.3.5.4.6.5.7...2007.2009    Chú ý quan sát và sắp xếp 

để giản ước hết.

=(2^2.3^2.4^2....2008^2)/(1.2.3.4.5.6....2007.3.4.5.6....2007.2008.2009)    Chuẩn đó

=(2^2.3^2.4^2....2008^2)/(2.3^2.4^2.5^2....2007^2.2008.2009)   Viết ra nháp thì dễ nhìn hơn

=2^2.2008^2/2.2008.2009=2.2008/2009   Tựbấm máy và nhớ TICK đó.

 

 

 

7 tháng 9 2016

S =2706800 ban nhe 

k cho mình đi mình viết công thức cho

10 tháng 9 2016

Bạn giải chỉ tiết ra đi. Nêu bạn giải chi tiết mình tích đúng cho

8 tháng 3 2017

S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102

= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)

= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100

= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)

Ta có công thức :

\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

Áp dụng vào bài toán ta được :

\(S=\frac{100.101.102}{3}+\frac{100.101}{2}\)

= 343400 + 5050

= 348450

8 tháng 3 2017

bằng 348450 nha bạn k cho mình nha

17 tháng 1 2018

2S=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2007.2009}\)

=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{2007}-\dfrac{1}{2009}\)

= 1- \(\dfrac{1}{2009}\)

= \(\dfrac{2008}{2009}\)

=> S=\(\dfrac{1004}{2009}\)

10 tháng 5 2018

làm sao ra được \(\dfrac{1004}{2009}\)

26 tháng 2 2023

\(\dfrac{2^2}{1\times3}\times\dfrac{3^2}{2.4}\times\dfrac{4^2}{3.5}\times\dfrac{5^2}{4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.3.2.4.3.5.4.6}=\dfrac{2^2.3^2.4^2.5^2}{1.2.3.3.4.4.5.2.3}=\dfrac{2^2.3^2.4^2.5^2}{3^3.2^2.4^2.5.1}=\dfrac{5}{3.1}=\dfrac{5}{3}\)

26 tháng 2 2023

\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4.6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot4\cdot6}\\ =\dfrac{2^2\cdot3^2\cdot4^2\cdot5^2}{1\cdot2\cdot4^2\cdot4^2\cdot5\cdot6}\\ =\dfrac{2\cdot5}{6}=\dfrac{5}{3}\)

25 tháng 4 2016

Đề như thế nào ý

25 tháng 4 2016

2s=2/