K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2015

\(S=\frac{2^2}{\left(2-1\right)\left(2+1\right)}+\frac{3^2}{\left(3-1\right)\left(3+1\right)}+...+\frac{2008^2}{\left(2008-1\right)\left(2008+1\right)}\)

\(S=\frac{2^2}{2^2-1}+\frac{3^2}{3^2-1}+...+\frac{2008^2}{2008^2-1}=\frac{2^2-1+1}{2^2-1}+\frac{3^2-1+1}{3^2-1}+...+\frac{2008^2-1+1}{2008^2-1}\)

\(S=1+\frac{1}{1.3}+1+\frac{1}{2.4}+...+1+\frac{1}{2007.2009}=\left(1+1+...+1\right)+\left(\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{2007.2009}\right)\)Tính \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{2007.2009}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{2007.2009}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)=\frac{1}{2}.\left(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}\right)\right)\)

\(A=\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{2008}-\frac{1}{2009}\right)=...\)

Vậy \(S=2007+A=...\)

 

5 tháng 1 2016

Bài này nếu dùng hằng đẳng thức lớp 8 thì hay hơn.Thôi cứ làm vầy nhé:

1+1/1.3=2^2/1.3  ;   1+1/2.4=3^2/2.4  ;   1+1/3.5=4^2/3.5  ;  ......;1+1/2007.2009=2008^2/2007.2009    Thấy quy luật rồi chứ!

ta được A=(2^2.3^2.4^2.....2008^2)/1.3.2.4.3.5.4.6.5.7...2007.2009    Chú ý quan sát và sắp xếp 

để giản ước hết.

=(2^2.3^2.4^2....2008^2)/(1.2.3.4.5.6....2007.3.4.5.6....2007.2008.2009)    Chuẩn đó

=(2^2.3^2.4^2....2008^2)/(2.3^2.4^2.5^2....2007^2.2008.2009)   Viết ra nháp thì dễ nhìn hơn

=2^2.2008^2/2.2008.2009=2.2008/2009   Tựbấm máy và nhớ TICK đó.

 

 

 

7 tháng 9 2016

S =2706800 ban nhe 

k cho mình đi mình viết công thức cho

10 tháng 9 2016

Bạn giải chỉ tiết ra đi. Nêu bạn giải chi tiết mình tích đúng cho

7 tháng 9 2016

\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)

7 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(S=\frac{4}{9}-\frac{1}{5}\)

\(S=\frac{11}{45}\)

11 tháng 7 2019

B=1.2+2.3+3.4+.....+97.98+(1+2+.....+97) 

3B=1.2.3+2.3(4-1)+3.4(5-2)+.......+97.98(99-96)+98.97.3:2 

3B=97.98.99+98.97.3:2 

=>B=97.98.33+98.97:2