g
giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=1.1+2.2+3.3+4.4+...+99.99\)
\(\Rightarrow E=1^2+2^2+3^2+4^2+...+99^2\)
\(\Rightarrow E=\dfrac{99.\left(99+1\right)\left(2.99+1\right)}{6}\)
\(\Rightarrow E=\dfrac{99.100.199}{6}\)
\(\Rightarrow E=33.50.199=328350\)
E = 1 x 1 + 2 x 2 + 3 x 3 + 4 x 4 +...+ 99 x 99
E = 1x(2-1) + 2 x (3-1)+...+ 99 x (100 -1)
D = 1 x 2 - 1 + 2 x 3 - 2 +...+ 99 x 100 - 99
D = 1x2 + 2 x 3 +...+ 99 x 100 - ( 1 + 2 +...+ 99)
Đặt A = 1x2 + 2 x 3 +...+ 99 x 100
B = 1 + 2 + ...+ 99
1x2 x 3 = 1x2x3
2x3x3 = 2x 3 x (4-1) = 2x3x4 - 1x2x3
3 x 4 x 3 = 3 x 4 x ( 5 - 2) = 3 x 4 x 5 - 2 x 3 x 4
................................................
99 x 100 x 3 = 99 x 100 x (101 - 98) = 99x100x101 - 98 x 99 x 100
Cộng vế với vế ta có: 3A = 99 x 100 x 101
A = 99 x 100 x 101 : 3 = 333300
B = 1 + 2 + 3 + ...+ 99
B = (99 + 1).[(99 -1):1 +1]:2 = 4950
E = 33300 - 4950 = 328350
Xét A = \(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)
Áp dụng BDT Co-si, ta có:
\(\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{36}{\sqrt{x}-3}}\) = 12
=> A \(\ge15\)
Dấu "=" xảy ra <=> x = 81
`5)A=sqrtx+36/(sqrtx-3)`
`A=sqrtx-3+36/(sqrtx-3)+3`
ÁP dụng bđt cosi ta có:
`sqrtx-3+36/(sqrtx-3)>=2sqrt{36}=12`
`=>A>=12+3=15`
Dấu "=" xảy ra khi `sqrtx-3=36/(sqrtx-3)`
`<=>(sqrtx-3)^2=36`
`<=>sqrtx-3=6`
`<=>sqrtx=9`
`<=>x=81`
Không có Max.
\(A=\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}+3\)
Theo BĐT Cô Si ta có:
\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge2\sqrt{\sqrt{x}-3.\dfrac{36}{\sqrt{x}-3}}\)
⇔\(\sqrt{x}-3+\dfrac{36}{\sqrt{x}-3}\ge12\)
⇔\(A\ge12+3\)
⇔\(A\ge15\)
⇒\(Min_A=15\)
Dấu = xảy ra khi và chỉ khi : \(\sqrt{x}-3=\dfrac{36}{\sqrt{x}-3}\)
⇔\(\left(\sqrt{x}-3\right)^2=36\)
⇔\(\sqrt{x}-3=6\)
⇔\(\sqrt{x}=9\)
⇔\(x=81\)
a. \(\sqrt{12^2}\)
= 12
b. \(\sqrt{\left(-7\right)^2}\)
= 7
c. \(\sqrt{\left(2-\sqrt{5}\right)^2}\)
= 2 - \(\sqrt{5}\)
A B C G D E
Kẻ AE là đường trung tuyến của tam giác ABC, E\(\in\)BC
Vì G là trọng tâm của tam giác ABC ( gt ) nên ta có : \(AG=\frac{2}{3}AE\Rightarrow\frac{AG}{AE}=\frac{2}{3}\)
Xét tam giác ABE có GD\(//\)AB ( G\(\in\)AE; D \(\in\)BE vì \(D\in BC\)mà \(E\in BC\)) ta có :
\(\frac{BD}{BE}=\frac{AG}{AE}\)( áp dụng định lý Ta-lét ) mà lại có :\(\frac{AG}{AE}=\frac{2}{3}\)( cmt )
\(\Rightarrow\frac{BD}{BE}=\frac{2}{3}\)
Mà AE là đường trung tuyến của tam giác ABC ( E \(\in\)BC ) nên E là trung điểm của BC
\(\Rightarrow BE=EC\)và \(BE+EC=BC\)
\(\Rightarrow\frac{BD}{BC}=\frac{BD}{BE+EC}=\frac{2}{2\cdot BE}=\frac{2}{2\cdot3}=\frac{1}{3}\)
\(\Rightarrow BD=\frac{1}{3}BC\)( ĐPCM )