Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C G D E
Kẻ AE là đường trung tuyến của tam giác ABC, E\(\in\)BC
Vì G là trọng tâm của tam giác ABC ( gt ) nên ta có : \(AG=\frac{2}{3}AE\Rightarrow\frac{AG}{AE}=\frac{2}{3}\)
Xét tam giác ABE có GD\(//\)AB ( G\(\in\)AE; D \(\in\)BE vì \(D\in BC\)mà \(E\in BC\)) ta có :
\(\frac{BD}{BE}=\frac{AG}{AE}\)( áp dụng định lý Ta-lét ) mà lại có :\(\frac{AG}{AE}=\frac{2}{3}\)( cmt )
\(\Rightarrow\frac{BD}{BE}=\frac{2}{3}\)
Mà AE là đường trung tuyến của tam giác ABC ( E \(\in\)BC ) nên E là trung điểm của BC
\(\Rightarrow BE=EC\)và \(BE+EC=BC\)
\(\Rightarrow\frac{BD}{BC}=\frac{BD}{BE+EC}=\frac{2}{2\cdot BE}=\frac{2}{2\cdot3}=\frac{1}{3}\)
\(\Rightarrow BD=\frac{1}{3}BC\)( ĐPCM )
a/ H là trung điểm của Mn
G là trung điểm của ON
Suy ra HG là đường trung bình của tam giác MON
Suy ra HG song song với Mo Từ đó suy ra HK song song Mo (1)
TA có Hg=1/2MO (T/c đường TB)Suy ra HG = MO Suy ra HK=MO(2)
Từ 1 và 2 suy ra MOHK là hình bình hành
Câu b mk chưa nhĩ ra
\(\Rightarrow\left(x^2-4x+4\right)-\left(x^2-9\right)-6=0\)
\(\Rightarrow x^2-4x+4-x^2+9-6=0\)
\(\Rightarrow-4x=-7\Rightarrow x=\frac{7}{4}\)
bạn Nguyễn Gia Triệu ơi :
Cho mik hỏi là làm sao bạn ra được -7 vậy
Bạn tham khảo nhé:
Trên tia đối của KG lấy điểm F sao cho KG=KF.
Ta có: ΔABC đều => ^A=600. Xét ΔADE có: ^A=600, AD=AE
=> ΔADE đều. Mà G là trọng tâm của ΔADE
=> G cũng là giao của 3 đường trung trực trong ΔABC
=> DG=AG (T/c đường trung trực) (1)
Xét ΔGDK và ΔFCK:
KD=KC
^DKG=^CKF => ΔGDK=ΔFCK (c.g.c)
KG=KF
=> DG=CF (2 cạnh tương ứng). (2)
Từ (1) và (2) => AG=CF.
Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK
Lại có: ED//BC (Vì ΔADE đều) => ^EDK=^BCK (So le trong)
=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)
Xét ΔΔADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE
=> ^GDE=^ADE/2=300.
Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)
Từ (3) và (4) => ^GAB=^FCB
Xét ΔAGB và ΔCFB có:
AB=CB
^GAB=^CFB => ΔAGB=ΔCFB (c.g.c)
AG=CF
=> GB=FB (2 cạnh tương ứng) (5).
=> ^ABG=^CBF (2 góc tương ứng). Lại có:
^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:
^CBF+^GBC=600 => ^GBF=600 (6)
Từ (5) và (6) => ΔGBF là tam giác đều. => ^BGF=600 hay ^BGK=600
K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300
Xét ΔBGK: ^BGK=600, ^GBK=300 => ^BKG=900.
ĐS: ^GBK=300, ^BGK=600, ^BKG=900.
a)ta có AD=DC=AC/2(gt)
AE=EB=AB/2(gt)
mà tam giác ABC cân tại A suy ra AB=AC
Nên AD=DC=AE=EB
Xét tg ABD và tg ACE CÓ
ae=ad(cmt)
Achung
AB=AC
tg ABC=tgACE(C-G-C)
BD=CE (2CANH TUONG UNG)
b)O;G LÀ SAO?
A B C G D E
Bài làm
a) Vì tam giác ABC là tam giác cân
=> AE = BE = AD = DC ( Vì E và D là trung điểm của AB và AC )
Xét tam giác BEC và tam giác CDB là:
BE = DC ( cmt )
\(\widehat{ABC}=\widehat{ABC}\)( tam giác ABC cân )
BC chung
=> Tam giác BEC = tam giác CDB ( c.g.c )
=> BD = CE ( hai cạnh tương ứng ) ( đpcm )
b) Vì BD và CE là hai đường trung tuyến nên DE và CE là đường trung trực cắt nhau tại G ( tính chất 3 đường trung tuyến trong tam giác cân )
Mà AG cắt nhau tại G
=> AG thuộc đường trung tuyến của tam giác ABC
=> AG cũng thuộc đường trung trực
Do đó: AG vuông gdc với BC. ( đpcm )
c) Vì tam giác BEC = tam giác CDB ( cmt )
=> \(\widehat{DBC}=\widehat{ECB}\)( hai góc tương ứng )
=> Tam giác GBC là tam giác cân
=> GB = GC ( hai cạnh bên )
Vì DE và CE là đường trung trực
=> \(CE\perp AB\)
=> \(BD\perp AC\)
Xét tam giác EGB và tam giác DGC có:
\(\widehat{BEG}=\widehat{CDG}\)( = 90o )
Cạnh huyền: GC = GB ( cmt )
góc nhọn \(\widehat{EGB}=\widehat{DGC}\)( hai góc đối đỉnh )
=> Tam giác EGB và tam giác DGC ( cạnh huyền-góc nhọn ) ( đpcm )
# CHúc bạn học tốt #
\(m_{Cu}=\frac{160.40}{100}=64\left(g\right)\Rightarrow n_{Cu}=\frac{m_{Cu}}{M_{Cu}}=\frac{64}{64}=1\left(mol\right)\)
\(m_S=\frac{160.20}{100}=32\left(g\right)\Rightarrow n_S=\frac{m_S}{M_S}=\frac{32}{32}=1\left(mol\right)\)
\(m_O=160-64-32=64\left(g\right)\Rightarrow n_O=\frac{m_O}{M_O}=\frac{64}{16}=4\left(mol\right)\)
Tỉ lệ số mol là tỉ lệ số nguyên tử nên trong 1 phân tử hợp chất có 1 nguyên tử Cu, 1 nguyên tử S và 4 ntử O
CTHH: \(CuSO_4\)
mCu = 160.40 : 100 = 64 (g)
mS = 160.20:100 = 32(g)
mO = 160 - 64 - 32 = 64 (g)
=> nCu = 64/64 = 1 (mol)
nS = 32/32 =1 (mol)
nO = 64/16 = 4 (mol)
=> trong chất A có 1 ngtu Cu, 1 ngtu S, 4 ngtu O
=> CTHH cần tìm của chất A là: CuSO4