K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

30 tháng 3 2021

dễ mà

 

 

 

a) Xét ΔBED và ΔBAD có

BE=BA(gt)

\(\widehat{EBD}=\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBED=ΔBAD(c-g-c)

16 tháng 4 2018

1.

Xét tam giác vuông AHE có FI là đường trung tuyến ứng với cạnh huyền nên IF = IH = IA = AH/2 = 6 : 2 = 3 (cm)

Do IF = IH nên tam giác IHF cân tại I. Vậy thì \(\widehat{IFH}=\widehat{IHF}\)

Lại có \(\widehat{IHF}=\widehat{BHE}\) nên \(\widehat{IFH}=\widehat{BHE}\)   (1)

Xét tam giác vuông BFC có FK là đường cao đồng thời là trung tuyến nên KF = KC = KB = BC : 2 = 4 (cm)

Ta cũng có KF = KB nên \(\widehat{HFK}=\widehat{HBK}\)   (2)

Ta có  \(\widehat{HBE}+\widehat{BHE}=90^o\)     (3)

Từ (1), (2), (3) suy ra \(\widehat{IFH}+\widehat{HFK}=90^o\Rightarrow\widehat{IFK}=90^o\)

Xét tam giác vuông IFK, áp dụng định lý Pi-ta-go ta có:

IK2 = IF2 + FK2 = 32 + 42 = 25

\(\Rightarrow IK=5cm.\)

16 tháng 4 2018

2.

Gọi J là giao điểm của AD và EF.

Xét tam giác AFE có AJ là phân giác đồng thời đường cao nên AFE là tam giác cân tại A.

Vậy nên AJ đồng thời là trung trực của EF.

Lại có D thuộc AJ nên DE = DF.          (1)

Xét tam giác AFD và tam giác AED có:

 AF = AE

Cạnh AD chung

DF = DE 

\(\Rightarrow\Delta AFD=\Delta AED\left(c-c-c\right)\)

\(\Rightarrow\widehat{AFD}=\widehat{AED}\Rightarrow\widehat{BFD}=\widehat{DEC}\)

Lại có \(\widehat{FBD}=180^o-\widehat{BAC}-\widehat{BCA}\)

\(\widehat{DEC}=180^o-\widehat{EDC}-\widehat{CBA}=180^o-\widehat{BAC}-\widehat{BCA}\)

Vậy nên \(\widehat{DBF}=\widehat{DFB}\) hay tam giác DBF cân tại D.

Suy ra DF = DB.            (2)

Từ (1) và (2) suy ra DB = DF = DE.

1 tháng 7 2018

â)xét tam giác AMBvà tam giác AMC

AB=AC( gt)

AM chung

MB=MC ( M là trung điểm của BC )

=> tam giác AMB= tam giác AMC ( c.c.c)

=> góc AMB= góc AMC ( 2 góc tương ứng )

mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )

=> góc AMB= góc AMC=90O

=> AM vuông góc với BC

b) xét tam giác ADF và tam giác ADE

DF=DE ( gt)

góc ADF= góc CDE ( 2 góc đối đỉnh )

AD=CD ( D là trung điểm của AC)

=> tam giác ADF = tam giác ADE ( c.g.c)

=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE

=.> AF// CE

25 tháng 5 2023

a) Xét ΔABD và ΔEBD có:

- BE = BA (giả thuyết)

\(\widehat{ABD}=\widehat{EBD}\) (vì BD là tia phân giác của \(\widehat{ABC}\) )

- BD là cạnh chung

Suy ra ΔABD = ΔEBD (c.g.c)

b) Từ a) suy ra DE = AD (vì hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}=90^o\) (vì hai góc tương ứng), hay \(DE\perp BC\)

c) Từ BE = BA và DE = AD suy ra B và D đều nằm trên đường trung trực của AE, hay BD là đường trung trực của AE

13 tháng 11 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

a: Xét ΔABD và ΔACD có

AB=AC

góc BAD=góc CAD

AD chung

=>ΔABD=ΔACD

b: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

c: ΔABC cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

d: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF và DE=DF

e: Xét ΔABC có AE/AB=AF/AC

nên EF//BC