Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAD và ΔBDE có:
BD là cạnh chung
B1=B2 (BD là tia phân giác của \(\widehat{B}\))
BA = BE (GT)
Nên ΔBAD= ΔBDE (c.g.c)
=>\(\widehat{ADB}=\widehat{BDE}\)
Ta có:\(\widehat{ADB}+\widehat{ADF}=\widehat{BDF}\)
\(\widehat{BDE}+\widehat{EDC}=\widehat{BDC}\)
Mà :\(\widehat{ADB}=\widehat{BDE}\)(CMT)
\(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh)
=>\(\widehat{BDF}=\widehat{BDC}\)
Xét ΔBDF và Δ BDC, có:
\(\widehat{BDF}=\widehat{BDC}\)
BD là cạnh chung
B1=B2
Nên ΔBDF=ΔBDC (g.c.g)
=>DC = DF
b)Ta có:ΔEDC vuông tại E=> DC là cạnh lớn nhất hay DC>DE
MÀ DE=AD (ΔBAD và ΔBDE)
=> AD< DC
c) Ta có BE=BA=>ΔBEA cân tại B
Mà BD là tia phân giác=>BD là đường trung trực
Vì :ΔBDF=ΔBDC=>BF=BC
=>ΔBFC cân tại B=>\(\widehat{C}=\widehat{F}\)
Ta có:\(\widehat{B}+\widehat{C}+\widehat{F}=180^o\)
=>\(\widehat{B}+\widehat{C}.2=180^O\)
=>\(\widehat{C}=\dfrac{180^O-\widehat{B}}{2}\)(1)
vÌ ΔBAE cân tại B
Tương tự ta có:
\(\widehat{E}=\dfrac{180^o-\widehat{B}}{2}\)(2)
Từ (1) và (2)=> \(\widehat{E}=\widehat{C}\)
Mà 2 góc này ở vị trí đồng vị=>AE // FC
a)Xét ΔABD và ΔEBD có:
AB=BE(gt)
ABDˆ=EBDˆ(gt)ABD^=EBD^(gt)
BD:cạnh chung
=> ΔABD=ΔEBD(c.g.c)
=> BADˆ=BEDˆ=90oBAD^=BED^=90o
=> DE⊥BCDE⊥BC
Vì: ΔABD=ΔEBD(cmt)
=>AD=DE
Vì: AB=BE(gt) ; AD=DE(cmt)
=> B,D thuộc vào đường trung trực của đt AE
=>BD là đường trung trực của đt AE
=>AE⊥BDAE⊥BD
b) Xét ΔDEC vuông tại E(cmt)
=> DE<DCDE<DC
Mà: DE=AD
=> AD<DC
c)Vì: BF=BA+AF ; BC=BE+EC
Mà: BF=BC(gt); BE=BA(gt)
=>AF=EC
Xét ΔADF và ΔEDC có:
AF=EC(cmt)
FADˆ=DECˆ=90o(cmt)FAD^=DEC^=90o(cmt)
AD=DE(cmt)
=>ΔADF=ΔEDC(c.g.c)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC